These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 27860417)

  • 1. An Electrolyte for Reversible Cycling of Sodium Metal and Intercalation Compounds.
    Schafzahl L; Hanzu I; Wilkening M; Freunberger SA
    ChemSusChem; 2017 Jan; 10(2):401-408. PubMed ID: 27860417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoroethylene Carbonate-Based Electrolyte with 1 M Sodium Bis(fluorosulfonyl)imide Enables High-Performance Sodium Metal Electrodes.
    Lee Y; Lee J; Lee J; Kim K; Cha A; Kang S; Wi T; Kang SJ; Lee HW; Choi NS
    ACS Appl Mater Interfaces; 2018 May; 10(17):15270-15280. PubMed ID: 29648435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraconcentrated Sodium Bis(fluorosulfonyl)imide-Based Electrolytes for High-Performance Sodium Metal Batteries.
    Lee J; Lee Y; Lee J; Lee SM; Choi JH; Kim H; Kwon MS; Kang K; Lee KT; Choi NS
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3723-3732. PubMed ID: 28067499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Layer Evolution on Graphite During Electrochemical Sodium-tetraglyme Co-intercalation.
    Maibach J; Jeschull F; Brandell D; Edström K; Valvo M
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12373-12381. PubMed ID: 28338314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium Metal Anodes: Emerging Solutions to Dendrite Growth.
    Lee B; Paek E; Mitlin D; Lee SW
    Chem Rev; 2019 Apr; 119(8):5416-5460. PubMed ID: 30946573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable High-Temperature Cycling of Na Metal Batteries on Na
    Makhlooghiazad F; Sharma M; Zhang Z; Howlett PC; Forsyth M; Nazar LF
    J Phys Chem Lett; 2020 Mar; 11(6):2092-2100. PubMed ID: 32073268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Electrochemical Compatibility and Reaction Mechanism on Na Metal and Hard Carbon Anodes of PC-Based Electrolytes for Sodium-Ion Batteries.
    Pan K; Lu H; Zhong F; Ai X; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39651-39660. PubMed ID: 30358978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Conducting Salts in Ionic Liquid Electrolytes for Enhanced Cyclability of Sodium-Ion Batteries.
    Do MP; Bucher N; Nagasubramanian A; Markovits I; Bingbing T; Fischer PJ; Loh KP; Kühn FE; Srinivasan M
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):23972-23981. PubMed ID: 31251014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorinated Ether Based Electrolyte Enabling Sodium-Metal Batteries with Exceptional Cycling Stability.
    Yi Q; Lu Y; Sun X; Zhang H; Yu H; Sun C
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46965-46972. PubMed ID: 31742374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Sodium Bis(fluorosulfonyl)imide (NaFSI)-based Multifunctional Electrolyte Stabilizes the Performance of NaNi
    Fan W; Wang W; Xie Q; He X; Li H; Zhao J; Nan J
    Chemistry; 2024 May; ():e202401321. PubMed ID: 38801410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processable and Moldable Sodium-Metal Anodes.
    Wang A; Hu X; Tang H; Zhang C; Liu S; Yang YW; Yang QH; Luo J
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11921-11926. PubMed ID: 28782154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Safety and High-Energy-Density Lithium Metal Batteries in a Novel Ionic-Liquid Electrolyte.
    Sun H; Zhu G; Zhu Y; Lin MC; Chen H; Li YY; Hung WH; Zhou B; Wang X; Bai Y; Gu M; Huang CL; Tai HC; Xu X; Angell M; Shyue JJ; Dai H
    Adv Mater; 2020 Jul; 32(26):e2001741. PubMed ID: 32449260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior.
    de la Llave E; Borgel V; Park KJ; Hwang JY; Sun YK; Hartmann P; Chesneau FF; Aurbach D
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1867-75. PubMed ID: 26642926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry.
    Wu XY; Sun MY; Shen YF; Qian JF; Cao YL; Ai XP; Yang HX
    ChemSusChem; 2014 Feb; 7(2):407-11. PubMed ID: 24464957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries.
    Suo L; Xue W; Gobet M; Greenbaum SG; Wang C; Chen Y; Yang W; Li Y; Li J
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1156-1161. PubMed ID: 29351993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Pyroprotein Seed Layers for Sodium Metal Anodes.
    Lee ME; Kwak HW; Kwak JH; Jin HJ; Yun YS
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12401-12407. PubMed ID: 30726056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.
    Takada K; Yamada Y; Watanabe E; Wang J; Sodeyama K; Tateyama Y; Hirata K; Kawase T; Yamada A
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33802-33809. PubMed ID: 28766928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advanced Development of Artificial Interphase Engineering for Stable Sodium Metal Anodes.
    Wang T; Hua Y; Xu Z; Yu JS
    Small; 2022 Feb; 18(5):e2102250. PubMed ID: 34672096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.