These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27860440)

  • 21. A phenome-guided drug repositioning through a latent variable model.
    Bisgin H; Liu Z; Fang H; Kelly R; Xu X; Tong W
    BMC Bioinformatics; 2014 Aug; 15(1):267. PubMed ID: 25103881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Network-based inference methods for drug repositioning.
    Chen H; Zhang H; Zhang Z; Cao Y; Tang W
    Comput Math Methods Med; 2015; 2015():130620. PubMed ID: 25969690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mining drug-disease relationships as a complement to medical genetics-based drug repositioning: Where a recommendation system meets genome-wide association studies.
    Wang H; Gu Q; Wei J; Cao Z; Liu Q
    Clin Pharmacol Ther; 2015 May; 97(5):451-4. PubMed ID: 25670647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug repositioning for dengue haemorrhagic fever by integrating multiple omics analyses.
    Amemiya T; Gromiha MM; Horimoto K; Fukui K
    Sci Rep; 2019 Jan; 9(1):523. PubMed ID: 30679503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery of novel therapeutic properties of drugs from transcriptional responses based on multi-label classification.
    Xie L; He S; Wen Y; Bo X; Zhang Z
    Sci Rep; 2017 Aug; 7(1):7136. PubMed ID: 28769090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NFFinder: an online bioinformatics tool for searching similar transcriptomics experiments in the context of drug repositioning.
    Setoain J; Franch M; MartĂ­nez M; Tabas-Madrid D; Sorzano CO; Bakker A; Gonzalez-Couto E; Elvira J; Pascual-Montano A
    Nucleic Acids Res; 2015 Jul; 43(W1):W193-9. PubMed ID: 25940629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of drugs having opposite effects on disease genes in a directed network.
    Yu H; Choo S; Park J; Jung J; Kang Y; Lee D
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):2. PubMed ID: 26818006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrating systems biology sources illuminates drug action.
    Gottlieb A; Altman RB
    Clin Pharmacol Ther; 2014 Jun; 95(6):663-9. PubMed ID: 24577151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comprehensive integrated drug similarity resource for in-silico drug repositioning and beyond.
    Azad AKM; Dinarvand M; Nematollahi A; Swift J; Lutze-Mann L; Vafaee F
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32597467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Target-Based Drug Repositioning Using Large-Scale Chemical-Protein Interactome Data.
    Sawada R; Iwata H; Mizutani S; Yamanishi Y
    J Chem Inf Model; 2015 Dec; 55(12):2717-30. PubMed ID: 26580494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of batch effect correction methods on drug induced differential gene expression profiles.
    Zhou W; Koudijs KKM; Böhringer S
    BMC Bioinformatics; 2019 Aug; 20(1):437. PubMed ID: 31438848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting drug-induced transcriptome responses of a wide range of human cell lines by a novel tensor-train decomposition algorithm.
    Iwata M; Yuan L; Zhao Q; Tabei Y; Berenger F; Sawada R; Akiyoshi S; Hamano M; Yamanishi Y
    Bioinformatics; 2019 Jul; 35(14):i191-i199. PubMed ID: 31510663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space.
    Cheng F; Li W; Wu Z; Wang X; Zhang C; Li J; Liu G; Tang Y
    J Chem Inf Model; 2013 Apr; 53(4):753-62. PubMed ID: 23527559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer.
    Chen HR; Sherr DH; Hu Z; DeLisi C
    BMC Med Genomics; 2016 Jul; 9(1):51. PubMed ID: 27475327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning prediction of chemical-induced dose-dependent and context-specific multiplex phenotype responses and its application to personalized alzheimer's disease drug repurposing.
    Wu Y; Liu Q; Qiu Y; Xie L
    PLoS Comput Biol; 2022 Aug; 18(8):e1010367. PubMed ID: 35951653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of connectivity map shows limited reproducibility in drug repositioning.
    Lim N; Pavlidis P
    Sci Rep; 2021 Sep; 11(1):17624. PubMed ID: 34475469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. REPRODUCIBLE DRUG REPURPOSING: WHEN SIMILARITY DOES NOT SUFFICE.
    Guney E
    Pac Symp Biocomput; 2017; 22():132-143. PubMed ID: 27896969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identifying prognostic features by bottom-up approach and correlating to drug repositioning.
    Li W; Yu J; Lian B; Sun H; Li J; Zhang M; Li L; Li Y; Liu Q; Xie L
    PLoS One; 2015; 10(3):e0118672. PubMed ID: 25738841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of drug network based on side effects and its application for drug repositioning.
    Ye H; Liu Q; Wei J
    PLoS One; 2014; 9(2):e87864. PubMed ID: 24505324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mouse model phenotypes provide information about human drug targets.
    Hoehndorf R; Hiebert T; Hardy NW; Schofield PN; Gkoutos GV; Dumontier M
    Bioinformatics; 2014 Mar; 30(5):719-25. PubMed ID: 24158600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.