BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27860504)

  • 1. Phylogenetic ANCOVA: Estimating Changes in Evolutionary Rates as Well as Relationships between Traits.
    Fuentes-G JA; Housworth EA; Weber A; Martins EP
    Am Nat; 2016 Dec; 188(6):615-627. PubMed ID: 27860504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context.
    Klingenberg CP; Marugán-Lobón J
    Syst Biol; 2013 Jul; 62(4):591-610. PubMed ID: 23589497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of mouthbrooding and life-history correlates in the fighting fish genus Betta.
    Rüber L; Britz R; Tan HH; Ng PK; Zardoya R
    Evolution; 2004 Apr; 58(4):799-813. PubMed ID: 15154556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian extension of phylogenetic generalized least squares: Incorporating uncertainty in the comparative study of trait relationships and evolutionary rates.
    Fuentes-G JA; Polly PD; Martins EP
    Evolution; 2020 Feb; 74(2):311-325. PubMed ID: 31849034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testosterone, testes size, and mating success in birds: a comparative study.
    Garamszegi LZ; Eens M; Hurtrez-Boussès S; Møller AP
    Horm Behav; 2005 Apr; 47(4):389-409. PubMed ID: 15777805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing evolutionary rates for different phenotypic traits on a phylogeny using likelihood.
    Adams DC
    Syst Biol; 2013 Mar; 62(2):181-92. PubMed ID: 23024153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation-based likelihood approach for evolutionary models of phenotypic traits on phylogeny.
    Kutsukake N; Innan H
    Evolution; 2013 Feb; 67(2):355-67. PubMed ID: 23356609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data.
    Adams DC
    Evolution; 2014 Sep; 68(9):2675-88. PubMed ID: 24899536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning within-species variance in behaviour to within- and between-population components for understanding evolution.
    Garamszegi LZ; Møller AP
    Ecol Lett; 2017 May; 20(5):599-608. PubMed ID: 28349624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Likelihood-Based Parameter Estimation for High-Dimensional Phylogenetic Comparative Models: Overcoming the Limitations of "Distance-Based" Methods.
    Goolsby EW
    Syst Biol; 2016 Sep; 65(5):852-70. PubMed ID: 27316673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative methods as a statistical fix: the dangers of ignoring an evolutionary model.
    Freckleton RP; Cooper N; Jetz W
    Am Nat; 2011 Jul; 178(1):E10-7. PubMed ID: 21670572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing Disparity and Rates of Morphological Evolution with Model-Based Phylogenetic Comparative Methods.
    Hansen TF; Bolstad GH; Tsuboi M
    Syst Biol; 2022 Aug; 71(5):1054-1072. PubMed ID: 34865153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data.
    Adams DC
    Syst Biol; 2014 Mar; 63(2):166-77. PubMed ID: 24335426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phylogenetic mixed model.
    Housworth EA; Martins EP; Lynch M
    Am Nat; 2004 Jan; 163(1):84-96. PubMed ID: 14767838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable Phylogenetic Regressions for Multivariate Comparative Data: Illustration with the MANOVA and Application to the Effect of Diet on Mandible Morphology in Phyllostomid Bats.
    Clavel J; Morlon H
    Syst Biol; 2020 Sep; 69(5):927-943. PubMed ID: 32061131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of cerebrotypes in birds.
    Iwaniuk AN; Hurd PL
    Brain Behav Evol; 2005; 65(4):215-30. PubMed ID: 15761215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of classic brain component sizes in relation to flightiness in birds.
    Symonds MR; Weston MA; Robinson RW; Guay PJ
    PLoS One; 2014; 9(3):e91960. PubMed ID: 24637884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolutionary convergence of avian lifestyles and their constrained coevolution with species' ecological niche.
    Laiolo P; Seoane J; Illera JC; Bastianelli G; Carrascal LM; Obeso JR
    Proc Biol Sci; 2015 Dec; 282(1821):20151808. PubMed ID: 26674945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The telencephalon of tetrapods in evolution.
    Striedter GF
    Brain Behav Evol; 1997; 49(4):179-213. PubMed ID: 9096908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds.
    Timmermans S; Lefebvre L; Boire D; Basu P
    Brain Behav Evol; 2000 Oct; 56(4):196-203. PubMed ID: 11154998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.