BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 27860831)

  • 1. The Integrative Physiology of Insect Chill Tolerance.
    Overgaard J; MacMillan HA
    Annu Rev Physiol; 2017 Feb; 79():187-208. PubMed ID: 27860831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance.
    MacMillan HA; Andersen JL; Davies SA; Overgaard J
    Sci Rep; 2015 Dec; 5():18607. PubMed ID: 26678786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria.
    Findsen A; Andersen JL; Calderon S; Overgaard J
    J Exp Biol; 2013 May; 216(Pt 9):1630-7. PubMed ID: 23348947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chill-tolerant Gryllus crickets maintain ion balance at low temperatures.
    Coello Alvarado LE; MacMillan HA; Sinclair BJ
    J Insect Physiol; 2015 Jun; 77():15-25. PubMed ID: 25846013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study.
    Olsson T; MacMillan HA; Nyberg N; Staerk D; Malmendal A; Overgaard J
    J Exp Biol; 2016 Aug; 219(Pt 16):2504-13. PubMed ID: 27307488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function in Locusta migratoria.
    Findsen A; Pedersen TH; Petersen AG; Nielsen OB; Overgaard J
    J Exp Biol; 2014 Apr; 217(Pt 8):1297-306. PubMed ID: 24744424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling.
    MacMillan HA; Findsen A; Pedersen TH; Overgaard J
    J Exp Biol; 2014 Aug; 217(Pt 16):2930-8. PubMed ID: 24902750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects.
    Andersen MK; Overgaard J
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Jul; 233():10-16. PubMed ID: 30910613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms underlying insect chill-coma.
    Macmillan HA; Sinclair BJ
    J Insect Physiol; 2011 Jan; 57(1):12-20. PubMed ID: 20969872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions.
    MacMillan HA; Andersen JL; Loeschcke V; Overgaard J
    Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(10):R823-31. PubMed ID: 25761700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of ion homeostasis.
    Kostál V; Renault D; Mehrabianová A; Bastl J
    Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):231-8. PubMed ID: 17275375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle membrane potential and insect chill coma.
    Andersen JL; MacMillan HA; Overgaard J
    J Exp Biol; 2015 Aug; 218(Pt 16):2492-5. PubMed ID: 26089529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic dietary salt stress mitigates hyperkalemia and facilitates chill coma recovery in Drosophila melanogaster.
    Yerushalmi GY; Misyura L; Donini A; MacMillan HA
    J Insect Physiol; 2016 Dec; 95():89-97. PubMed ID: 27642001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological correlates of chill susceptibility in Lepidoptera.
    Andersen MK; Jensen SO; Overgaard J
    J Insect Physiol; 2017 Apr; 98():317-326. PubMed ID: 28188725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent effects of cold and hyperkalaemia cause insect chilling injury.
    MacMillan HA; Baatrup E; Overgaard J
    Proc Biol Sci; 2015 Oct; 282(1817):20151483. PubMed ID: 26468241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a high cholesterol diet on chill tolerance are highly context-dependent in Drosophila.
    Allen MC; Ritchie MW; El-Saadi MI; MacMillan HA
    J Therm Biol; 2024 Jan; 119():103789. PubMed ID: 38340464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance.
    MacMillan HA; Ferguson LV; Nicolai A; Donini A; Staples JF; Sinclair BJ
    J Exp Biol; 2015 Feb; 218(Pt 3):423-32. PubMed ID: 25524989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut.
    MacMillan HA; Yerushalmi GY; Jonusaite S; Kelly SP; Donini A
    Sci Rep; 2017 Aug; 7(1):8807. PubMed ID: 28821771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential.
    Andersen MK; Folkersen R; MacMillan HA; Overgaard J
    J Exp Biol; 2017 Feb; 220(Pt 3):487-496. PubMed ID: 27903702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure.
    Des Marteaux LE; Sinclair BJ
    J Insect Physiol; 2016 Jun; 89():19-27. PubMed ID: 27039031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.