These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 27861162)
1. Investigation of the surface potential of TiO Kou L; Li YJ; Kamijyo T; Naitoh Y; Sugawara Y Nanotechnology; 2016 Dec; 27(50):505704. PubMed ID: 27861162 [TBL] [Abstract][Full Text] [Related]
2. The local electronic properties of individual Pt atoms adsorbed on TiO Yurtsever A; Fernández-Torre D; Onoda J; Abe M; Morita S; Sugimoto Y; Pérez R Nanoscale; 2017 May; 9(18):5812-5821. PubMed ID: 28225121 [TBL] [Abstract][Full Text] [Related]
3. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy. Nony L; Bocquet F; Loppacher C; Glatzel T Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441 [TBL] [Abstract][Full Text] [Related]
4. New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors. Sadewasser S; Jelinek P; Fang CK; Custance O; Yamada Y; Sugimoto Y; Abe M; Morita S Phys Rev Lett; 2009 Dec; 103(26):266103. PubMed ID: 20366324 [TBL] [Abstract][Full Text] [Related]
5. Investigation of tunneling current and local contact potential difference on the TiO Wen HF; Li YJ; Arima E; Naitoh Y; Sugawara Y; Xu R; Cheng ZH Nanotechnology; 2017 Mar; 28(10):105704. PubMed ID: 28164861 [TBL] [Abstract][Full Text] [Related]
6. KPFM/AFM imaging on TiO Arima E; Wen HF; Naitoh Y; Li YJ; Sugawara Y Nanotechnology; 2018 Mar; 29(10):105504. PubMed ID: 29313525 [TBL] [Abstract][Full Text] [Related]
7. Probe microscope observation of platinum atoms deposited on the TiO2(110)-(1 x 1) surface. Sasahara A; Pang CL; Onishi H J Phys Chem B; 2006 Jul; 110(27):13453-7. PubMed ID: 16821870 [TBL] [Abstract][Full Text] [Related]
9. High resolution atomic force and Kelvin probe force microscopy image data of InAs(001) surface using frequency modulation method. Park YM; Park JS; Chung CH; Lee S Data Brief; 2020 Apr; 29():105177. PubMed ID: 32055662 [TBL] [Abstract][Full Text] [Related]
10. Reconstruction of surface potential from Kelvin probe force microscopy images. Cohen G; Halpern E; Nanayakkara SU; Luther JM; Held C; Bennewitz R; Boag A; Rosenwaks Y Nanotechnology; 2013 Jul; 24(29):295702. PubMed ID: 23807266 [TBL] [Abstract][Full Text] [Related]
11. Surface potential imaging with atomic resolution by frequency-modulation Kelvin probe force microscopy without bias voltage feedback. Kou L; Ma Z; Li YJ; Naitoh Y; Komiyama M; Sugawara Y Nanotechnology; 2015 May; 26(19):195701. PubMed ID: 25895740 [TBL] [Abstract][Full Text] [Related]
12. Measurement and Manipulation of the Charge State of an Adsorbed Oxygen Adatom on the Rutile TiO Zhang Q; Li YJ; Wen HF; Adachi Y; Miyazaki M; Sugawara Y; Xu R; Cheng ZH; Brndiar J; Kantorovich L; Štich I J Am Chem Soc; 2018 Nov; 140(46):15668-15674. PubMed ID: 30403344 [TBL] [Abstract][Full Text] [Related]
13. Multiparametric Kelvin Probe Force Microscopy for the Simultaneous Mapping of Surface Potential and Nanomechanical Properties. Xie H; Zhang H; Hussain D; Meng X; Song J; Sun L Langmuir; 2017 Mar; 33(11):2725-2733. PubMed ID: 28263608 [TBL] [Abstract][Full Text] [Related]
14. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes. Ma ZM; Kou L; Naitoh Y; Li YJ; Sugawara Y Nanotechnology; 2013 Jun; 24(22):225701. PubMed ID: 23633495 [TBL] [Abstract][Full Text] [Related]
15. Theoretical simulation of Kelvin probe force microscopy for Si surfaces by taking account of chemical forces. Tsukada M; Masago A; Shimizu M J Phys Condens Matter; 2012 Feb; 24(8):084002. PubMed ID: 22309993 [TBL] [Abstract][Full Text] [Related]
16. Pulsed Force Kelvin Probe Force Microscopy. Jakob DS; Wang H; Xu XG ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008 [TBL] [Abstract][Full Text] [Related]
17. High-Resolution Kelvin Probe Force Microscopy Imaging of Interface Dipoles and Photogenerated Charges in Organic Donor-Acceptor Photovoltaic Blends. Fuchs F; Caffy F; Demadrille R; Mélin T; Grévin B ACS Nano; 2016 Jan; 10(1):739-46. PubMed ID: 26750993 [TBL] [Abstract][Full Text] [Related]
18. Integrated Tapping Mode Kelvin Probe Force Microscopy with Photoinduced Force Microscopy for Correlative Chemical and Surface Potential Mapping. Jakob DS; Li N; Zhou H; Xu XG Small; 2021 Sep; 17(37):e2102495. PubMed ID: 34310045 [TBL] [Abstract][Full Text] [Related]
19. Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode. Stan G; Namboodiri P Beilstein J Nanotechnol; 2021; 12():1115-1126. PubMed ID: 34703722 [TBL] [Abstract][Full Text] [Related]
20. Imaging the surface potential at the steps on the rutile TiO Miyazaki M; Wen HF; Zhang Q; Adachi Y; Brndiar J; Štich I; Li YJ; Sugawara Y Beilstein J Nanotechnol; 2019; 10():1228-1236. PubMed ID: 31293860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]