These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 27861738)
1. Online measurement of viscosity for biological systems in stirred tank bioreactors. Schelden M; Lima W; Doerr EW; Wunderlich M; Rehmann L; Büchs J; Regestein L Biotechnol Bioeng; 2017 May; 114(5):990-997. PubMed ID: 27861738 [TBL] [Abstract][Full Text] [Related]
2. Prediction of gas-liquid mass transfer coefficient in sparged stirred tank bioreactors. Garcia-Ochoa F; Gomez E Biotechnol Bioeng; 2005 Dec; 92(6):761-72. PubMed ID: 16155951 [TBL] [Abstract][Full Text] [Related]
3. [Xanthan production by Xanthomonas campestris in a non-conventional culture medium]. Azuaje RA; Sánchez JA Acta Cient Venez; 1999; 50(4):201-9. PubMed ID: 10974710 [TBL] [Abstract][Full Text] [Related]
4. Comparison of two methods for designing calorimeters using stirred tank reactors. Regestein L; Giese H; Zavrel M; Büchs J Biotechnol Bioeng; 2013 Jan; 110(1):180-90. PubMed ID: 22829331 [TBL] [Abstract][Full Text] [Related]
5. Non-invasive online detection of microbial lysine formation in stirred tank bioreactors by using calorespirometry. Regestein L; Maskow T; Tack A; Knabben I; Wunderlich M; Lerchner J; Büchs J Biotechnol Bioeng; 2013 May; 110(5):1386-95. PubMed ID: 23280310 [TBL] [Abstract][Full Text] [Related]
6. Process performance of parallel bioreactors for batch cultivation of Streptomyces tendae. Hortsch R; Krispin H; Weuster-Botz D Bioprocess Biosyst Eng; 2011 Mar; 34(3):297-304. PubMed ID: 20931236 [TBL] [Abstract][Full Text] [Related]
7. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms. Hortsch R; Stratmann A; Weuster-Botz D Biotechnol Bioeng; 2010 Jun; 106(3):443-51. PubMed ID: 20198653 [TBL] [Abstract][Full Text] [Related]
8. A comparison between shaker and bioreactor performance based on the kinetic parameters of xanthan gum production. Faria S; Vieira PA; Resende MM; França FP; Cardoso VL Appl Biochem Biotechnol; 2009 May; 156(1-3):45-58. PubMed ID: 19130306 [TBL] [Abstract][Full Text] [Related]
9. The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor. Garcia-Ochoa F; Gomez E; Alcon A; Santos VE Bioprocess Biosyst Eng; 2013 Jul; 36(7):911-25. PubMed ID: 23010723 [TBL] [Abstract][Full Text] [Related]
10. Influence of agitation and aeration in xanthan production by Xanthomonas campestris pv pruni strain 101. Borges CD; da Moreira AS; Vendruscolo CT; Ayub MA Rev Argent Microbiol; 2008; 40(2):81-5. PubMed ID: 18705486 [TBL] [Abstract][Full Text] [Related]
11. Xanthan production by a native strain of X. campestris and evaluation of application in EOR. Nasr S; Soudi MR; Haghighi M Pak J Biol Sci; 2007 Sep; 10(17):3010-3. PubMed ID: 19090220 [TBL] [Abstract][Full Text] [Related]
12. Development of a phenomenological modeling approach for prediction of growth and xanthan gum production using Xanthomonas campestris. Letisse F; Lindley ND; Roux G Biotechnol Prog; 2003; 19(3):822-7. PubMed ID: 12790645 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of different organic phases for water-in-oil xanthan fermentation. Kuttuva SG; Restrepo AS; Ju LK Appl Microbiol Biotechnol; 2004 Apr; 64(3):340-5. PubMed ID: 14564488 [TBL] [Abstract][Full Text] [Related]
14. Effectiveness factor in biological external convection: study in high viscosity systems. Peña C; Galindo E; Díaz M J Biotechnol; 2002 Apr; 95(1):1-12. PubMed ID: 11879707 [TBL] [Abstract][Full Text] [Related]
15. A study of the effects of aeration and agitation on the properties and production of xanthan gum from crude glycerin derived from biodiesel using the response surface methodology. de Jesus Assis D; Brandão LV; de Sousa Costa LA; Figueiredo TV; Sousa LS; Padilha FF; Druzian JI Appl Biochem Biotechnol; 2014 Mar; 172(5):2769-85. PubMed ID: 24435765 [TBL] [Abstract][Full Text] [Related]
16. Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. Schatschneider S; Persicke M; Watt SA; Hublik G; Pühler A; Niehaus K; Vorhölter FJ J Biotechnol; 2013 Aug; 167(2):123-34. PubMed ID: 23395674 [TBL] [Abstract][Full Text] [Related]
17. New Culture Medium to Xanthan Production by Xanthomonas campestris pv. campestris. Carignatto CR; Oliveira KS; de Lima VM; de Oliva Neto P Indian J Microbiol; 2011 Jul; 51(3):283-8. PubMed ID: 22754004 [TBL] [Abstract][Full Text] [Related]
18. Hydrodynamic characteristics and mixing behaviour of Sclerotium glucanicum culture fluids in an airlift reactor with an internal loop used for scleroglucan production. Kang X; Wang H; Wang Y; Harvey LM; McNeil B J Ind Microbiol Biotechnol; 2001 Oct; 27(4):208-14. PubMed ID: 11687932 [TBL] [Abstract][Full Text] [Related]
19. Production and viscosity of Xanthan Gum are increased by LED irradiation of X. campestris cultivated in medium containing produced water of the oil industry. Crugeira PJL; de Almeida PF; Sampaio ICF; Soares LGP; Moraga Amador DA; Samuel IDW; Persheyev S; Silveira L; Pinheiro ALB J Photochem Photobiol B; 2022 Jan; 226():112356. PubMed ID: 34801926 [TBL] [Abstract][Full Text] [Related]
20. Small scale production and characterization of xanthan gum synthesized by local isolates of Xanthomonas campestris. Barua R; Alam MJ; Salim M; Ashrafee TS Indian J Exp Biol; 2016 Feb; 54(2):151-5. PubMed ID: 26934783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]