BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27861738)

  • 1. Online measurement of viscosity for biological systems in stirred tank bioreactors.
    Schelden M; Lima W; Doerr EW; Wunderlich M; Rehmann L; Büchs J; Regestein L
    Biotechnol Bioeng; 2017 May; 114(5):990-997. PubMed ID: 27861738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of gas-liquid mass transfer coefficient in sparged stirred tank bioreactors.
    Garcia-Ochoa F; Gomez E
    Biotechnol Bioeng; 2005 Dec; 92(6):761-72. PubMed ID: 16155951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Xanthan production by Xanthomonas campestris in a non-conventional culture medium].
    Azuaje RA; Sánchez JA
    Acta Cient Venez; 1999; 50(4):201-9. PubMed ID: 10974710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of two methods for designing calorimeters using stirred tank reactors.
    Regestein L; Giese H; Zavrel M; Büchs J
    Biotechnol Bioeng; 2013 Jan; 110(1):180-90. PubMed ID: 22829331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive online detection of microbial lysine formation in stirred tank bioreactors by using calorespirometry.
    Regestein L; Maskow T; Tack A; Knabben I; Wunderlich M; Lerchner J; Büchs J
    Biotechnol Bioeng; 2013 May; 110(5):1386-95. PubMed ID: 23280310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process performance of parallel bioreactors for batch cultivation of Streptomyces tendae.
    Hortsch R; Krispin H; Weuster-Botz D
    Bioprocess Biosyst Eng; 2011 Mar; 34(3):297-304. PubMed ID: 20931236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms.
    Hortsch R; Stratmann A; Weuster-Botz D
    Biotechnol Bioeng; 2010 Jun; 106(3):443-51. PubMed ID: 20198653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison between shaker and bioreactor performance based on the kinetic parameters of xanthan gum production.
    Faria S; Vieira PA; Resende MM; França FP; Cardoso VL
    Appl Biochem Biotechnol; 2009 May; 156(1-3):45-58. PubMed ID: 19130306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor.
    Garcia-Ochoa F; Gomez E; Alcon A; Santos VE
    Bioprocess Biosyst Eng; 2013 Jul; 36(7):911-25. PubMed ID: 23010723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of agitation and aeration in xanthan production by Xanthomonas campestris pv pruni strain 101.
    Borges CD; da Moreira AS; Vendruscolo CT; Ayub MA
    Rev Argent Microbiol; 2008; 40(2):81-5. PubMed ID: 18705486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xanthan production by a native strain of X. campestris and evaluation of application in EOR.
    Nasr S; Soudi MR; Haghighi M
    Pak J Biol Sci; 2007 Sep; 10(17):3010-3. PubMed ID: 19090220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a phenomenological modeling approach for prediction of growth and xanthan gum production using Xanthomonas campestris.
    Letisse F; Lindley ND; Roux G
    Biotechnol Prog; 2003; 19(3):822-7. PubMed ID: 12790645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of different organic phases for water-in-oil xanthan fermentation.
    Kuttuva SG; Restrepo AS; Ju LK
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):340-5. PubMed ID: 14564488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness factor in biological external convection: study in high viscosity systems.
    Peña C; Galindo E; Díaz M
    J Biotechnol; 2002 Apr; 95(1):1-12. PubMed ID: 11879707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the effects of aeration and agitation on the properties and production of xanthan gum from crude glycerin derived from biodiesel using the response surface methodology.
    de Jesus Assis D; Brandão LV; de Sousa Costa LA; Figueiredo TV; Sousa LS; Padilha FF; Druzian JI
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2769-85. PubMed ID: 24435765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100.
    Schatschneider S; Persicke M; Watt SA; Hublik G; Pühler A; Niehaus K; Vorhölter FJ
    J Biotechnol; 2013 Aug; 167(2):123-34. PubMed ID: 23395674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Culture Medium to Xanthan Production by Xanthomonas campestris pv. campestris.
    Carignatto CR; Oliveira KS; de Lima VM; de Oliva Neto P
    Indian J Microbiol; 2011 Jul; 51(3):283-8. PubMed ID: 22754004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic characteristics and mixing behaviour of Sclerotium glucanicum culture fluids in an airlift reactor with an internal loop used for scleroglucan production.
    Kang X; Wang H; Wang Y; Harvey LM; McNeil B
    J Ind Microbiol Biotechnol; 2001 Oct; 27(4):208-14. PubMed ID: 11687932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small scale production and characterization of xanthan gum synthesized by local isolates of Xanthomonas campestris.
    Barua R; Alam MJ; Salim M; Ashrafee TS
    Indian J Exp Biol; 2016 Feb; 54(2):151-5. PubMed ID: 26934783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated single-use stirred-tank bioreactors for parallel microbial cultivations.
    Kusterer A; Krause C; Kaufmann K; Arnold M; Weuster-Botz D
    Bioprocess Biosyst Eng; 2008 Apr; 31(3):207-15. PubMed ID: 18193293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.