These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 2786188)
1. The key role of the mitochondria-rich cell in Na+ and H+ transport across the frog skin epithelium. Ehrenfeld J; Lacoste I; Harvey BJ Pflugers Arch; 1989 May; 414(1):59-67. PubMed ID: 2786188 [TBL] [Abstract][Full Text] [Related]
2. Active urea transport independent of H+ and Na+ transport in frog skin epithelium. Lacoste I; Dunel-Erb S; Harvey BJ; Laurent P; Ehrenfeld J Am J Physiol; 1991 Oct; 261(4 Pt 2):R898-906. PubMed ID: 1833990 [TBL] [Abstract][Full Text] [Related]
3. Control of Na+ and H+ transports by exocytosis/endocytosis phenomena in a tight epithelium. Lacoste I; Brochiero E; Ehrenfeld J J Membr Biol; 1993 Jun; 134(3):197-212. PubMed ID: 7692059 [TBL] [Abstract][Full Text] [Related]
4. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase. Harvey B; Lacoste I; Ehrenfeld J J Gen Physiol; 1991 Apr; 97(4):749-76. PubMed ID: 1647438 [TBL] [Abstract][Full Text] [Related]
5. The key role of the H+ V-ATPase in acid-base balance and Na+ transport processes in frog skin. Ehrenfeld J; Klein U J Exp Biol; 1997 Jan; 200(Pt 2):247-56. PubMed ID: 9050232 [TBL] [Abstract][Full Text] [Related]
6. The H+ pump in frog skin (Rana esculenta): identification and localization of a V-ATPase. Klein U; Timme M; Zeiske W; Ehrenfeld J J Membr Biol; 1997 May; 157(2):117-26. PubMed ID: 9151653 [TBL] [Abstract][Full Text] [Related]
7. Evidence for a Na+/H+ exchanger at the basolateral membranes of the isolated frog skin epithelium: effect of amiloride analogues. Ehrenfeld J; Cragoe EJ; Harvey BJ Pflugers Arch; 1987 Jun; 409(1-2):200-7. PubMed ID: 3039454 [TBL] [Abstract][Full Text] [Related]
8. Effect of amiloride on electrolyte concentrations and rubidium uptake in principal and mitochondria-rich cells of frog skin. Dörge A; Beck FX; Rick R; Nagel W; Thurau K Pflugers Arch; 1990 May; 416(3):335-8. PubMed ID: 2166276 [TBL] [Abstract][Full Text] [Related]
10. Intracellular pH controls cell membrane Na+ and K+ conductances and transport in frog skin epithelium. Harvey BJ; Thomas SR; Ehrenfeld J J Gen Physiol; 1988 Dec; 92(6):767-91. PubMed ID: 3265144 [TBL] [Abstract][Full Text] [Related]
11. Intracellular ion concentrations in the isolated frog skin epithelium: evidence for different types of mitochondria-rich cells. Rick R J Membr Biol; 1992 May; 127(3):227-36. PubMed ID: 1495088 [TBL] [Abstract][Full Text] [Related]
12. Electrophysiological analysis of sodium-transport in the colon of the frog (Rana esculenta). Modulation of apical membrane properties by antidiuretic hormone. Krattenmacher R; Clauss W Pflugers Arch; 1988 Jun; 411(6):606-12. PubMed ID: 2457866 [TBL] [Abstract][Full Text] [Related]
13. Isotonic secretion via frog skin glands in vitro. Water secretion is coupled to the secretion of sodium ions. Nielsen R Acta Physiol Scand; 1990 May; 139(1):211-21. PubMed ID: 2356751 [TBL] [Abstract][Full Text] [Related]
14. The role of mitochondria-rich cells in sodium transport across amphibian skin. Nagel W; Dörge A Pflugers Arch; 1996; 433(1-2):146-52. PubMed ID: 9019715 [TBL] [Abstract][Full Text] [Related]
15. Energization of sodium absorption by the H(+)-ATPase pump in mitochondria-rich cells of frog skin. Harvey BJ J Exp Biol; 1992 Nov; 172():289-309. PubMed ID: 1491227 [TBL] [Abstract][Full Text] [Related]
16. Correlation between chloride flux via the mitochondria-rich cells and transepithelial water movement in isolated frog skin (Rana esculenta). Nielsen R Acta Physiol Scand; 1995 Dec; 155(4):351-61. PubMed ID: 8719255 [TBL] [Abstract][Full Text] [Related]
17. In vivo Na+- and Cl minus-independent transport across the skin of Rana esculenta. Garcia-Romeu F; Ehrenfeld J Am J Physiol; 1975 Mar; 228(3):839-44. PubMed ID: 234692 [TBL] [Abstract][Full Text] [Related]
18. Uptake of Br in mitochondria-rich and principal cells of toad skin epithelium. Dörge A; Rick R; Beck FX; Nagel W Pflugers Arch; 1988 Aug; 412(3):305-13. PubMed ID: 3186433 [TBL] [Abstract][Full Text] [Related]
19. Role of proton pump of mitochondria-rich cells for active transport of chloride ions in toad skin epithelium. Larsen EH; Willumsen NJ; Christoffersen BC J Physiol; 1992 May; 450():203-16. PubMed ID: 1331423 [TBL] [Abstract][Full Text] [Related]
20. Effects of arginine vasotocin and vasopressin receptor antagonists on Na+ and Cl- transport in the isolated skin of two frog species, Hyla japonica and Rana nigromaculata. Yamada T; Nishio T; Sano Y; Kawago K; Matsuda K; Uchiyama M Gen Comp Endocrinol; 2008 May; 157(1):63-9. PubMed ID: 18448104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]