These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 27861961)

  • 1. Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study.
    Chang YK; Alderman BL; Chu CH; Wang CC; Song TF; Chen FT
    Psychophysiology; 2017 Feb; 54(2):289-300. PubMed ID: 27861961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels.
    Tsai CL; Chen FC; Pan CY; Wang CH; Huang TH; Chen TC
    Psychoneuroendocrinology; 2014 Mar; 41():121-31. PubMed ID: 24495613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute Moderate-Intensity Exercise Generally Enhances Attentional Resources Related to Perceptual Processing.
    Zhou F; Qin C
    Front Psychol; 2019; 10():2547. PubMed ID: 31781010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute Exercise Facilitates the N450 Inhibition Marker and P3 Attention Marker during Stroop Test in Young and Older Adults.
    Hsieh SS; Huang CJ; Wu CT; Chang YK; Hung TM
    J Clin Med; 2018 Oct; 7(11):. PubMed ID: 30373181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural time course of conflict adaptation effects on the Stroop task.
    Larson MJ; Kaufman DA; Perlstein WM
    Neuropsychologia; 2009 Feb; 47(3):663-70. PubMed ID: 19071142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness.
    Tsai CL; Pan CY; Chen FC; Wang CH; Chou FY
    Exp Physiol; 2016 Jul; 101(7):836-50. PubMed ID: 27122080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dissociable neural dynamics of cognitive conflict and emotional conflict control: An ERP study.
    Xue S; Li Y; Kong X; He Q; Liu J; Qiu J
    Neurosci Lett; 2016 Apr; 619():149-54. PubMed ID: 26987720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute effects of high-intensity interval training and moderate-intensity continuous exercise on BDNF and irisin levels and neurocognitive performance in late middle-aged and older adults.
    Tsai CL; Pan CY; Tseng YT; Chen FC; Chang YC; Wang TC
    Behav Brain Res; 2021 Sep; 413():113472. PubMed ID: 34274372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs.
    Larson MJ; Clayson PE; Clawson A
    Int J Psychophysiol; 2014 Sep; 93(3):283-97. PubMed ID: 24950132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Event-related potential indices of congruency sequence effects without feature integration or contingency learning confounds.
    Larson MJ; Clayson PE; Kirwan CB; Weissman DH
    Psychophysiology; 2016 Jun; 53(6):814-22. PubMed ID: 26854028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conflict adaptation and sequential trial effects: support for the conflict monitoring theory.
    Clayson PE; Larson MJ
    Neuropsychologia; 2011 Jun; 49(7):1953-61. PubMed ID: 21435347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural cascade of conflict processing: Not just time-on-task.
    McKay CC; van den Berg B; Woldorff MG
    Neuropsychologia; 2017 Feb; 96():184-191. PubMed ID: 28017818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociated stimulus and response conflict effect in the Stroop task: evidence from evoked brain potentials and brain oscillations.
    Zhao J; Liang WK; Juan CH; Wang L; Wang S; Zhu Z
    Biol Psychol; 2015 Jan; 104():130-8. PubMed ID: 25511611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.
    Hwang J; Brothers RM; Castelli DM; Glowacki EM; Chen YT; Salinas MM; Kim J; Jung Y; Calvert HG
    Neurosci Lett; 2016 Sep; 630():247-253. PubMed ID: 27450438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral and ERP indices of response conflict in Stroop and flanker tasks.
    Tillman CM; Wiens S
    Psychophysiology; 2011 Oct; 48(10):1405-11. PubMed ID: 21457276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Stroop matching task presents conflict at both the response and nonresponse levels: an event-related potential and electromyography study.
    Caldas AL; Machado-Pinheiro W; Souza LB; Motta-Ribeiro GC; David IA
    Psychophysiology; 2012 Sep; 49(9):1215-24. PubMed ID: 22748126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of negative air ions on cognitive function: an event-related potential (ERP) study.
    Chu CH; Chen SR; Wu CH; Cheng YC; Cho YM; Chang YK
    Int J Biometeorol; 2019 Oct; 63(10):1309-1317. PubMed ID: 31240386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of regular physical activity with neuroelectric indices of interference processing in young adults.
    Aly M; Kojima H
    Psychophysiology; 2020 Dec; 57(12):e13674. PubMed ID: 33460156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive control and conflict adaptation similarities in children and adults.
    Larson MJ; Clawson A; Clayson PE; South M
    Dev Neuropsychol; 2012; 37(4):343-57. PubMed ID: 22612546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.