These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
387 related articles for article (PubMed ID: 27862042)
1. Relativistic (SR-ZORA) quantum theory of atoms in molecules properties. Anderson JS; Rodríguez JI; Ayers PW; Götz AW J Comput Chem; 2017 Jan; 38(2):81-86. PubMed ID: 27862042 [TBL] [Abstract][Full Text] [Related]
2. Quantum theory of atoms in molecules: results for the SR-ZORA Hamiltonian. Anderson JS; Ayers PW J Phys Chem A; 2011 Nov; 115(45):13001-6. PubMed ID: 22010759 [TBL] [Abstract][Full Text] [Related]
3. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory. Filatov M; Cremer D J Chem Phys; 2005 Feb; 122(6):064104. PubMed ID: 15740364 [TBL] [Abstract][Full Text] [Related]
4. Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions. Keith TA; Frisch MJ J Phys Chem A; 2011 Nov; 115(45):12879-94. PubMed ID: 21780749 [TBL] [Abstract][Full Text] [Related]
5. Relativistic quantum Monte Carlo method using zeroth-order regular approximation Hamiltonian. Nakatsuka Y; Nakajima T; Nakata M; Hirao K J Chem Phys; 2010 Feb; 132(5):054102. PubMed ID: 20136300 [TBL] [Abstract][Full Text] [Related]
6. Electron-nucleus cusp correction scheme for the relativistic zeroth-order regular approximation quantum Monte Carlo method. Nakatsuka Y; Nakajima T; Hirao K J Chem Phys; 2010 May; 132(17):174108. PubMed ID: 20459157 [TBL] [Abstract][Full Text] [Related]
7. Relativistic Effects on the Topology of the Electron Density. Eickerling G; Mastalerz R; Herz V; Scherer W; Himmel HJ; Reiher M J Chem Theory Comput; 2007 Nov; 3(6):2182-97. PubMed ID: 26636211 [TBL] [Abstract][Full Text] [Related]
8. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds. Moncho S; Autschbach J J Chem Theory Comput; 2010 Jan; 6(1):223-34. PubMed ID: 26614333 [TBL] [Abstract][Full Text] [Related]
9. Relativistic nuclear magnetic resonance J-coupling with ultrasoft pseudopotentials and the zeroth-order regular approximation. Green TF; Yates JR J Chem Phys; 2014 Jun; 140(23):234106. PubMed ID: 24952522 [TBL] [Abstract][Full Text] [Related]
10. A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian--formulation and applications. Filatov M; Cremer D J Chem Phys; 2005 Jan; 122(4):44104. PubMed ID: 15740232 [TBL] [Abstract][Full Text] [Related]
11. The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom. Wodyński A; Malkina OL; Pecul M J Phys Chem A; 2016 Jul; 120(28):5624-34. PubMed ID: 27177252 [TBL] [Abstract][Full Text] [Related]
12. Electric field gradients in Hg compounds: molecular orbital (MO) analysis and comparison of 4-component and 2-component (ZORA) methods. Arcisauskaite V; Knecht S; Sauer SP; Hemmingsen L Phys Chem Chem Phys; 2012 Dec; 14(46):16070-9. PubMed ID: 23111689 [TBL] [Abstract][Full Text] [Related]
13. Relativistic quantum calculations to understand the contribution of f-type atomic orbitals and chemical bonding of actinides with organic ligands. Zapata-Escobar AD; Pakhira S; Barroso-Flores J; Aucar GA; Mendoza-Cortes JL Phys Chem Chem Phys; 2023 Feb; 25(7):5592-5601. PubMed ID: 36727265 [TBL] [Abstract][Full Text] [Related]
14. Scalar Relativistic Computations of Nuclear Magnetic Shielding and g-Shifts with the Zeroth-Order Regular Approximation and Range-Separated Hybrid Density Functionals. Aquino F; Govind N; Autschbach J J Chem Theory Comput; 2011 Oct; 7(10):3278-92. PubMed ID: 26598162 [TBL] [Abstract][Full Text] [Related]
15. Relativistic diffusion Monte Carlo method: zeroth-order regular approximation-diffusion Monte Carlo method in a spin-free formalism. Nakatsuka Y; Nakajima T J Chem Phys; 2012 Oct; 137(15):154103. PubMed ID: 23083144 [TBL] [Abstract][Full Text] [Related]
16. Time-dependent quasirelativistic density-functional theory based on the zeroth-order regular approximation. Peng D; Zou W; Liu W J Chem Phys; 2005 Oct; 123(14):144101. PubMed ID: 16238368 [TBL] [Abstract][Full Text] [Related]
17. A combined experimental and quantum chemistry study of selenium chemical shift tensors. Demko BA; Eichele K; Wasylishen RE J Phys Chem A; 2006 Dec; 110(50):13537-50. PubMed ID: 17165881 [TBL] [Abstract][Full Text] [Related]
18. Two-component relativistic density functional method for computing nonsingular complex linear response of molecules based on the zeroth order regular approximation. Devarajan A; Gaenko A; Autschbach J J Chem Phys; 2009 May; 130(19):194102. PubMed ID: 19466816 [TBL] [Abstract][Full Text] [Related]
19. The role of relativity in the optical response of gold within the time-dependent current-density-functional theory. Romaniello P; de Boeij PL J Chem Phys; 2005 Apr; 122(16):164303. PubMed ID: 15945680 [TBL] [Abstract][Full Text] [Related]
20. The calculation of excitation energies based on the relativistic two-component zeroth-order regular approximation and time-dependent density-functional with full use of symmetry. Wang F; Ziegler T; van Lenthe E; van Gisbergen S; Baerends EJ J Chem Phys; 2005 May; 122(20):204103. PubMed ID: 15945709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]