These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 27862052)
1. Direct simulation of electroosmosis around a spherical particle with inhomogeneously acquired surface charge. Alizadeh A; Wang M Electrophoresis; 2017 Mar; 38(5):580-595. PubMed ID: 27862052 [TBL] [Abstract][Full Text] [Related]
2. Ionic size dependent electroosmosis in ion-selective microchannels and nanochannels. Bandopadhyay A; Chakraborty S Electrophoresis; 2013 Aug; 34(15):2193-8. PubMed ID: 23712911 [TBL] [Abstract][Full Text] [Related]
3. Electroosmosis in homogeneously charged micro- and nanoscale random porous media. Wang M; Chen S J Colloid Interface Sci; 2007 Oct; 314(1):264-73. PubMed ID: 17585928 [TBL] [Abstract][Full Text] [Related]
4. On ion transport regulation with field-effect nonlinear electroosmosis control in microfluidics embedding an ion-selective medium. Liu W; Ren Y; Xue R; Song C; Wu Q Electrophoresis; 2020 Jun; 41(10-11):778-792. PubMed ID: 31943244 [TBL] [Abstract][Full Text] [Related]
5. Modeling and simulation of nanoparticle separation through a solid-state nanopore. Jubery TZ; Prabhu AS; Kim MJ; Dutta P Electrophoresis; 2012 Jan; 33(2):325-33. PubMed ID: 22222977 [TBL] [Abstract][Full Text] [Related]
6. Electrokinetic flow and electric conduction of salt-free solutions in a capillary. Luo RH; Keh HJ Electrophoresis; 2020 Sep; 41(16-17):1503-1508. PubMed ID: 32524627 [TBL] [Abstract][Full Text] [Related]
7. A novel particle separation method based on induced-charge electro-osmotic flow and polarizability of dielectric particles. Zhang F; Li D Electrophoresis; 2014 Oct; 35(20):2922-9. PubMed ID: 25043290 [TBL] [Abstract][Full Text] [Related]
8. Electrophoretic motion of a spherical particle with a symmetric nonuniform surface charge distribution in a nanotube. Qian S; Joo SW; Hou WS; Zhao X Langmuir; 2008 May; 24(10):5332-40. PubMed ID: 18399647 [TBL] [Abstract][Full Text] [Related]
9. The effects of the electrical double layer on giant ionic currents through single-walled carbon nanotubes. Bearden S; Zhang G Nanotechnology; 2013 Mar; 24(12):125204. PubMed ID: 23466571 [TBL] [Abstract][Full Text] [Related]
10. Evanescent-wave particle velocimetry measurements of zeta-potentials in fused-silica microchannels. Cevheri N; Yoda M Electrophoresis; 2013 Jul; 34(13):1950-6. PubMed ID: 23592366 [TBL] [Abstract][Full Text] [Related]
11. Electrophoretic mobility of a colloidal particle with constant surface charge density. Makino K; Ohshima H Langmuir; 2010 Dec; 26(23):18016-9. PubMed ID: 21047090 [TBL] [Abstract][Full Text] [Related]
12. Electrokinetic transport through nanochannels. Movahed S; Li D Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982 [TBL] [Abstract][Full Text] [Related]
13. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles. Ovanesyan Z; Aljzmi A; Almusaynid M; Khan A; Valderrama E; Nash KL; Marucho M J Colloid Interface Sci; 2016 Jan; 462():325-33. PubMed ID: 26476201 [TBL] [Abstract][Full Text] [Related]
14. Electrokinetic particle translocation through a nanopore containing a floating electrode. Zhang M; Ai Y; Sharma A; Joo SW; Kim DS; Qian S Electrophoresis; 2011 Jul; 32(14):1864-74. PubMed ID: 21710551 [TBL] [Abstract][Full Text] [Related]
15. Electrophoretic mobility of a spherical colloidal particle in a salt-free medium. Ohshima H J Colloid Interface Sci; 2002 Apr; 248(2):499-503. PubMed ID: 16290556 [TBL] [Abstract][Full Text] [Related]
16. Electro-osmotic flow in coated nanocapillaries: a theoretical investigation. Marini Bettolo Marconi U; Monteferrante M; Melchionna S Phys Chem Chem Phys; 2014 Dec; 16(46):25473-82. PubMed ID: 25343500 [TBL] [Abstract][Full Text] [Related]