These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27862080)

  • 1. Numerical study of the faithful replication of micro/nanostructures on curved surfaces by the electrohydrodynamic instability process.
    Li H; Yu W; Wang T; Liu Z; Desmulliez MP
    Electrophoresis; 2017 Feb; 38(3-4):525-532. PubMed ID: 27862080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical characterization of electrohydrodynamic micro- or nanopatterning processes based on a phase-field formulation of liquid dielectrophoresis.
    Tian H; Shao J; Ding Y; Li X; Liu H
    Langmuir; 2013 Apr; 29(15):4703-14. PubMed ID: 23506225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical studies of electrically induced pattern formation by coupling liquid dielectrophoresis and two-phase flow.
    Tian H; Shao J; Ding Y; Li X; Li X
    Electrophoresis; 2011 Sep; 32(17):2245-52. PubMed ID: 21800328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces.
    Su M; Qin F; Zhang Z; Chen B; Pan Q; Huang Z; Cai Z; Zhao Z; Hu X; Derome D; Carmeliet J; Song Y
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14234-14240. PubMed ID: 32500938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition between the bulk and the dissociation layer in electrohydrodynamic flow of dielectric liquid around coplanar electrodes.
    Suh YK; Baek KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023009. PubMed ID: 23496612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of diffusion in curved surfaces and its application to tubular membranes.
    Klaus CJ; Raghunathan K; DiBenedetto E; Kenworthy AK
    Mol Biol Cell; 2016 Dec; 27(24):3937-3946. PubMed ID: 27733625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of Dean number and curvature effects on magneto-biofluid flow through a curved conduit.
    Hoque MM; Alam MM; Ferdows M; Bég OA
    Proc Inst Mech Eng H; 2013 Nov; 227(11):1155-70. PubMed ID: 23901067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact micro/nano electrohydrodynamic patterning: using a thin conductive film and a patterned template.
    Nazaripoor H; Koch CR; Sadrzadeh M; Bhattacharjee S
    Soft Matter; 2016 Jan; 12(4):1074-84. PubMed ID: 26574883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.
    Zhang XS; Zhu FY; Han MD; Sun XM; Peng XH; Zhang HX
    Langmuir; 2013 Aug; 29(34):10769-75. PubMed ID: 23906343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic compound eye with a high numerical aperture and anti-reflective nanostructures on curved surfaces.
    Wang T; Yu W; Li C; Zhang H; Xu Z; Lu Z; Sun Q
    Opt Lett; 2012 Jun; 37(12):2397-9. PubMed ID: 22739920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces.
    Koch K; Schulte AJ; Fischer A; Gorb SN; Barthlott W
    Bioinspir Biomim; 2008 Dec; 3(4):046002. PubMed ID: 18779630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of Hierarchically Ordered Structures on a Polymer Film by Electrohydrodynamic Structure Formation.
    Tian H; Shao J; Hu H; Wang L; Ding Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16419-27. PubMed ID: 27268135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled Nanoscale Electrohydrodynamic Patterning Using Mesopatterned Template.
    Dwivedi S; Narayanan R; Chaudhary R; Mukherjee R; Atta A
    ACS Omega; 2018 Aug; 3(8):9781-9789. PubMed ID: 31459107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of DNA with different configurations on flat and nanopatterned surfaces.
    Li B; Fang X; Luo H; Seo YS; Petersen E; Ji Y; Rafailovich M; Sokolov J; Gersappe D; Chu B
    Anal Chem; 2006 Jul; 78(14):4743-51. PubMed ID: 16841891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching.
    He Y; Jiang C; Yin H; Chen J; Yuan W
    J Colloid Interface Sci; 2011 Dec; 364(1):219-29. PubMed ID: 21889158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric Study on Electric Field-Induced Micro-/Nanopatterns in Thin Polymer Films.
    Song F; Ju D; Gu F; Liu Y; Ji Y; Ren Y; He X; Sha B; Li BQ; Yang Q
    Langmuir; 2018 Apr; 34(14):4188-4198. PubMed ID: 29542932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).
    Wan Y; Wang Y; Liu Z; Qu X; Han B; Bei J; Wang S
    Biomaterials; 2005 Jul; 26(21):4453-9. PubMed ID: 15701374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Hydrophobic Nanostructured Surfaces for Microfluidic Control.
    Morikawa K; Tsukahara T
    Anal Sci; 2016; 32(1):79-83. PubMed ID: 26753710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Micropatterns on Curved Surfaces Using Two-Step Ultrasonic Forming.
    Park JH; Park K
    Micromachines (Basel); 2019 Sep; 10(10):. PubMed ID: 31569412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of curved nanostructures on lithium niobate surfaces using femtosecond laser pulses.
    Zhang S; Jiang L; Li X; Hu J; Zhao M; Lu YF
    Opt Express; 2017 May; 25(10):10843-10852. PubMed ID: 28788772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.