These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 27862181)
1. Identification of biomarker-by-treatment interactions in randomized clinical trials with survival outcomes and high-dimensional spaces. Ternès N; Rotolo F; Heinze G; Michiels S Biom J; 2017 Jul; 59(4):685-701. PubMed ID: 27862181 [TBL] [Abstract][Full Text] [Related]
2. Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials. Ternès N; Rotolo F; Michiels S BMC Med Res Methodol; 2017 May; 17(1):83. PubMed ID: 28532387 [TBL] [Abstract][Full Text] [Related]
3. Favoring the hierarchical constraint in penalized survival models for randomized trials in precision medicine. Belhechmi S; Le Teuff G; De Bin R; Rotolo F; Michiels S BMC Bioinformatics; 2023 Mar; 24(1):96. PubMed ID: 36927444 [TBL] [Abstract][Full Text] [Related]
4. Empirical extensions of the lasso penalty to reduce the false discovery rate in high-dimensional Cox regression models. Ternès N; Rotolo F; Michiels S Stat Med; 2016 Jul; 35(15):2561-73. PubMed ID: 26970107 [TBL] [Abstract][Full Text] [Related]
5. Bayesian two-step Lasso strategy for biomarker selection in personalized medicine development for time-to-event endpoints. Gu X; Yin G; Lee JJ Contemp Clin Trials; 2013 Nov; 36(2):642-50. PubMed ID: 24075829 [TBL] [Abstract][Full Text] [Related]
6. High-dimensional Cox models: the choice of penalty as part of the model building process. Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132 [TBL] [Abstract][Full Text] [Related]
7. Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models. Belhechmi S; Bin R; Rotolo F; Michiels S BMC Bioinformatics; 2020 Jul; 21(1):277. PubMed ID: 32615919 [TBL] [Abstract][Full Text] [Related]
8. Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO. Datta S; Le-Rademacher J; Datta S Biometrics; 2007 Mar; 63(1):259-71. PubMed ID: 17447952 [TBL] [Abstract][Full Text] [Related]
9. Testing interaction between treatment and high-dimensional covariates in randomized clinical trials. Callegaro A; Spiessens B; Dizier B; Montoya FU; van Houwelingen HC Biom J; 2017 Jul; 59(4):672-684. PubMed ID: 27763683 [TBL] [Abstract][Full Text] [Related]
10. A simulation study on estimating biomarker-treatment interaction effects in randomized trials with prognostic variables. Haller B; Ulm K Trials; 2018 Feb; 19(1):128. PubMed ID: 29463271 [TBL] [Abstract][Full Text] [Related]
11. Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection. Mayr A; Hofner B; Schmid M BMC Bioinformatics; 2016 Jul; 17():288. PubMed ID: 27444890 [TBL] [Abstract][Full Text] [Related]
12. On Enrichment Strategies for Biomarker Stratified Clinical Trials. Wang X; Zhou J; Wang T; George SL J Biopharm Stat; 2018; 28(2):292-308. PubMed ID: 28933670 [TBL] [Abstract][Full Text] [Related]
13. Regularized estimation in the accelerated failure time model with high-dimensional covariates. Huang J; Ma S; Xie H Biometrics; 2006 Sep; 62(3):813-20. PubMed ID: 16984324 [TBL] [Abstract][Full Text] [Related]
14. Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: simulation and application. Vasquez MM; Hu C; Roe DJ; Chen Z; Halonen M; Guerra S BMC Med Res Methodol; 2016 Nov; 16(1):154. PubMed ID: 27842498 [TBL] [Abstract][Full Text] [Related]
15. Lasso adjustments of treatment effect estimates in randomized experiments. Bloniarz A; Liu H; Zhang CH; Sekhon JS; Yu B Proc Natl Acad Sci U S A; 2016 Jul; 113(27):7383-90. PubMed ID: 27382153 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the modified unbounded penalty and the LASSO to select predictive genes of response to chemotherapy in breast cancer. Collignon O; Han J; An H; Oh S; Lee Y PLoS One; 2018; 13(10):e0204897. PubMed ID: 30273405 [TBL] [Abstract][Full Text] [Related]
17. Auxiliary variable-enriched biomarker-stratified design. Wang T; Wang X; Zhou H; Cai J; George SL Stat Med; 2018 Dec; 37(30):4610-4635. PubMed ID: 30221368 [TBL] [Abstract][Full Text] [Related]
18. Sample size and threshold estimation for clinical trials with predictive biomarkers. Mackey HM; Bengtsson T Contemp Clin Trials; 2013 Nov; 36(2):664-72. PubMed ID: 24064355 [TBL] [Abstract][Full Text] [Related]
19. Partial least squares dimension reduction for microarray gene expression data with a censored response. Nguyen DV Math Biosci; 2005 Jan; 193(1):119-37. PubMed ID: 15681279 [TBL] [Abstract][Full Text] [Related]
20. Approaches to Regularized Regression - A Comparison between Gradient Boosting and the Lasso. Hepp T; Schmid M; Gefeller O; Waldmann E; Mayr A Methods Inf Med; 2016 Oct; 55(5):422-430. PubMed ID: 27626931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]