BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27862376)

  • 1. Catalytic Hydrogen Production by Ruthenium Complexes from the Conversion of Primary Amines to Nitriles: Potential Application as a Liquid Organic Hydrogen Carrier.
    Ventura-Espinosa D; Marzá-Beltrán A; Mata JA
    Chemistry; 2016 Dec; 22(49):17758-17766. PubMed ID: 27862376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Easy Ruthenium-Catalysed Oxidation of Primary Amines to Nitriles under Oxidant-Free Conditions.
    Achard T; Egly J; Sigrist M; Maisse-François A; Bellemin-Laponnaz S
    Chemistry; 2019 Oct; 25(58):13271-13274. PubMed ID: 31287194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Dehydrogenative Coupling of Hydrosilanes with Alcohols for the Production of Hydrogen On-demand: Application of a Silane/Alcohol Pair as a Liquid Organic Hydrogen Carrier.
    Ventura-Espinosa D; Carretero-Cerdán A; Baya M; García H; Mata JA
    Chemistry; 2017 Aug; 23(45):10815-10821. PubMed ID: 28745407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable coordination of amine functionalised N-heterocyclic carbene ligands to Ru, Rh and Ir: C-H and N-H activation and catalytic transfer hydrogenation.
    Cross WB; Daly CG; Boutadla Y; Singh K
    Dalton Trans; 2011 Oct; 40(38):9722-30. PubMed ID: 21858341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene complexes.
    Dam JH; Osztrovszky G; Nordstrøm LU; Madsen R
    Chemistry; 2010 Jun; 16(23):6820-7. PubMed ID: 20437429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.
    Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient N-heterocyclic carbene-ruthenium complex: application towards the synthesis of polyesters and polyamides.
    Malineni J; Keul H; Möller M
    Macromol Rapid Commun; 2015 Mar; 36(6):547-52. PubMed ID: 25653190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system.
    Samec JS; Ell AH; Bäckvall JE
    Chemistry; 2005 Apr; 11(8):2327-34. PubMed ID: 15706621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic dehydrogenation of liquid organic hydrogen carrier dodecahydro-N-ethylcarbazole over palladium catalysts supported on different supports.
    Feng Z; Chen X; Bai X
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36172-36185. PubMed ID: 32556981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, spectral and catalytic dehydrogenation studies of ruthenium complexes containing NO bidentate ligands.
    Shoair AF; El-Bindary AA
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():490-6. PubMed ID: 24840490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruthenium/Imidazolylphosphine catalysis: hydrogenation of aliphatic and aromatic nitriles to form amines.
    Werkmeister S; Junge K; Wendt B; Spannenberg A; Jiao H; Bornschein C; Beller M
    Chemistry; 2014 Apr; 20(15):4227-31. PubMed ID: 24615766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amide synthesis from alcohols and amines by the extrusion of dihydrogen.
    Nordstrøm LU; Vogt H; Madsen R
    J Am Chem Soc; 2008 Dec; 130(52):17672-3. PubMed ID: 19061316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A practical and benign synthesis of primary amines through ruthenium-catalyzed reduction of nitriles.
    Enthaler S; Junge K; Addis D; Erre G; Beller M
    ChemSusChem; 2008; 1(12):1006-10. PubMed ID: 19034895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and activity of ruthenium alkylidene complexes coordinated with phosphine and N-heterocyclic carbene ligands.
    Trnka TM; Morgan JP; Sanford MS; Wilhelm TE; Scholl M; Choi TL; Ding S; Day MW; Grubbs RH
    J Am Chem Soc; 2003 Mar; 125(9):2546-58. PubMed ID: 12603143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruthenium-Catalyzed Selective Hydroboration of Nitriles and Imines.
    Kaithal A; Chatterjee B; Gunanathan C
    J Org Chem; 2016 Nov; 81(22):11153-11161. PubMed ID: 27809518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching Amine Oxidation from Imines to Nitriles by Carbon-Hydrogen Bond Activation via Strong Base Modified Strategy.
    Zhu G; Shi S; Feng X; Zhao L; Wang Y; Cao J; Gao J; Xu J
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52758-52765. PubMed ID: 36394950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic dehydrogenation of amines to nitriles catalyzed by triazolylidene ruthenium complexes with O
    Olivares M; Knörr P; Albrecht M
    Dalton Trans; 2020 Feb; 49(6):1981-1991. PubMed ID: 31984977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ruthenium(II) complexes with N-heterocyclic carbene-phosphine ligands for the
    Huang M; Li Y; Lan XB; Liu J; Zhao C; Liu Y; Ke Z
    Org Biomol Chem; 2021 Apr; 19(15):3451-3461. PubMed ID: 33899900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruthenium Catalyzed Dehydrogenation of Alcohols and Mechanistic Study.
    Awasthi MK; Singh SK
    Inorg Chem; 2019 Nov; 58(21):14912-14923. PubMed ID: 31625731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct amide synthesis from either alcohols or aldehydes with amines: activity of Ru(II) hydride and Ru(0) complexes.
    Muthaiah S; Ghosh SC; Jee JE; Chen C; Zhang J; Hong SH
    J Org Chem; 2010 May; 75(9):3002-6. PubMed ID: 20369820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.