These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27862431)

  • 1. A Thresholdless Tunable Raman Nanolaser using a ZnO-Graphene Superlattice.
    Zhu H; Xu X; Tian X; Tang J; Liang H; Chen L; Xie Y; Zhang X; Xiao C; Li R; Gu Q; Hua P; Ruan S
    Adv Mater; 2017 Jan; 29(2):. PubMed ID: 27862431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelength-Tunable Waveguide Emissions from Electrically Driven Single ZnO/ZnO:Ga Superlattice Microwires.
    Jiang M; Mao W; Zhou X; Kan C; Shi D
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11800-11811. PubMed ID: 30840431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room-Temperature Gate Voltage Modulation of Plasmonic Nanolasers.
    Huang ZT; Chien TW; Cheng CW; Li CC; Chen KP; Gwo S; Lu TC
    ACS Nano; 2023 Apr; 17(7):6488-6496. PubMed ID: 36989057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thresholdless quantum dot nanolaser.
    Ota Y; Kakuda M; Watanabe K; Iwamoto S; Arakawa Y
    Opt Express; 2017 Aug; 25(17):19981-19994. PubMed ID: 29041684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Modulation of Plasmonic Nanolasers by Breaking Reciprocity on Hybrid Graphene-Insulator-Metal Platforms.
    Li H; Huang ZT; Hong KB; Hsu CY; Chen JW; Cheng CW; Chen KP; Lin TR; Gwo SJ; Lu TC
    Adv Sci (Weinh); 2020 Dec; 7(24):2001823. PubMed ID: 33344123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers.
    Chou YH; Chou BT; Chiang CK; Lai YY; Yang CT; Li H; Lin TR; Lin CC; Kuo HC; Wang SC; Lu TC
    ACS Nano; 2015; 9(4):3978-83. PubMed ID: 25853853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction.
    Zhu H; Xiao C; Cheng H; Grote F; Zhang X; Yao T; Li Z; Wang C; Wei S; Lei Y; Xie Y
    Nat Commun; 2014 Jun; 5():3960. PubMed ID: 24888747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Nanolasers Enhanced by Hybrid Graphene-Insulator-Metal Structures.
    Li H; Li JH; Hong KB; Yu MW; Chung YC; Hsu CY; Yang JH; Cheng CW; Huang ZT; Chen KP; Lin TR; Gwo S; Lu TC
    Nano Lett; 2019 Aug; 19(8):5017-5024. PubMed ID: 31268338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmons in graphene moiré superlattices.
    Ni GX; Wang H; Wu JS; Fei Z; Goldflam MD; Keilmann F; Özyilmaz B; Castro Neto AH; Xie XM; Fogler MM; Basov DN
    Nat Mater; 2015 Dec; 14(12):1217-22. PubMed ID: 26413987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating the Electronic Properties of Graphene by Self-Organized Sulfur Identical Nanoclusters and Atomic Superlattices Confined at an Interface.
    Ma D; Fu Z; Sui X; Bai K; Qiao J; Yan C; Zhang Y; Hu J; Xiao Q; Mao X; Duan W; He L
    ACS Nano; 2018 Nov; 12(11):10984-10991. PubMed ID: 30252446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Tunable Graphene Superlattice with Deformable Periodical Nano-Gating.
    Wei B; Ying H; Chen J; Zang Q; Dong J; Zhang H; Liu Y; Liu C
    Nanomaterials (Basel); 2024 Jun; 14(12):. PubMed ID: 38921895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene plasmon enhanced photoluminescence in ZnO microwires.
    Liu R; Fu XW; Meng J; Bie YQ; Yu DP; Liao ZM
    Nanoscale; 2013 Jun; 5(12):5294-8. PubMed ID: 23695346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser.
    Nozaki K; Kita S; Baba T
    Opt Express; 2007 Jun; 15(12):7506-14. PubMed ID: 19547074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-Chip Monolithically Fabricated Plasmonic-Waveguide Nanolaser.
    Ho YL; Clark JK; Kamal ASA; Delaunay JJ
    Nano Lett; 2018 Dec; 18(12):7769-7776. PubMed ID: 30423249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films.
    Hwang SW; Shin DH; Kim CO; Hong SH; Kim MC; Kim J; Lim KY; Kim S; Choi SH; Ahn KJ; Kim G; Sim SH; Hong BH
    Phys Rev Lett; 2010 Sep; 105(12):127403. PubMed ID: 20867671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanolasers Incorporating Co
    Pan Y; Wang L; Su X; Gao D; Cheng P
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6975-6986. PubMed ID: 33502158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomesh-Type Graphene Superlattice on Au(111) Substrate.
    Süle P; Szendrő M; Magda GZ; Hwang C; Tapasztó L
    Nano Lett; 2015 Dec; 15(12):8295-9. PubMed ID: 26560972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.
    Chou YH; Wu YM; Hong KB; Chou BT; Shih JH; Chung YC; Chen PY; Lin TR; Lin CC; Lin SD; Lu TC
    Nano Lett; 2016 May; 16(5):3179-86. PubMed ID: 27089144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers.
    Chou BT; Chou YH; Wu YM; Chung YC; Hsueh WJ; Lin SW; Lu TC; Lin TR; Lin SD
    Sci Rep; 2016 Jan; 6():19887. PubMed ID: 26814581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of phonon transport by the formation of the Al
    Park NW; Ahn JY; Park TH; Lee JH; Lee WY; Cho K; Yoon YG; Choi CJ; Park JS; Lee SK
    Nanoscale; 2017 Jun; 9(21):7027-7036. PubMed ID: 28368061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.