These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
494 related articles for article (PubMed ID: 27862567)
1. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park. Williamson DH; Harrison HB; Almany GR; Berumen ML; Bode M; Bonin MC; Choukroun S; Doherty PJ; Frisch AJ; Saenz-Agudelo P; Jones GP Mol Ecol; 2016 Dec; 25(24):6039-6054. PubMed ID: 27862567 [TBL] [Abstract][Full Text] [Related]
2. Larval export from marine reserves and the recruitment benefit for fish and fisheries. Harrison HB; Williamson DH; Evans RD; Almany GR; Thorrold SR; Russ GR; Feldheim KA; van Herwerden L; Planes S; Srinivasan M; Berumen ML; Jones GP Curr Biol; 2012 Jun; 22(11):1023-8. PubMed ID: 22633811 [TBL] [Abstract][Full Text] [Related]
3. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Green AL; Maypa AP; Almany GR; Rhodes KL; Weeks R; Abesamis RA; Gleason MG; Mumby PJ; White AT Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1215-47. PubMed ID: 25423947 [TBL] [Abstract][Full Text] [Related]
4. The role of marine reserves in the replenishment of a locally impacted population of anemonefish on the Great Barrier Reef. Bonin MC; Harrison HB; Williamson DH; Frisch AJ; Saenz-Agudelo P; Berumen ML; Jones GP Mol Ecol; 2016 Jan; 25(2):487-99. PubMed ID: 26589106 [TBL] [Abstract][Full Text] [Related]
5. Marine reserves stabilize fish populations and fisheries yields in disturbed coral reef systems. Hopf JK; Jones GP; Williamson DH; Connolly SR Ecol Appl; 2019 Jul; 29(5):e01905. PubMed ID: 30985954 [TBL] [Abstract][Full Text] [Related]
6. A connectivity portfolio effect stabilizes marine reserve performance. Harrison HB; Bode M; Williamson DH; Berumen ML; Jones GP Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25595-25600. PubMed ID: 32989139 [TBL] [Abstract][Full Text] [Related]
7. Comparative demography of commercially important species of coral grouper, Plectropomus leopardus and P. laevis, from Australia's great barrier reef and Coral Sea marine parks. Payet SD; Lowe JR; Mapstone BD; Pratchett MS; Sinclair-Taylor TH; Taylor BM; Waldie PA; Harrison HB J Fish Biol; 2020 Oct; 97(4):1165-1176. PubMed ID: 32785930 [TBL] [Abstract][Full Text] [Related]
8. Spatial variation in the effects of size and age on reproductive dynamics of common coral trout Plectropomus leopardus. Carter AB; Russ GR; Tobin AJ; Williams AJ; Davies CR; Mapstone BD J Fish Biol; 2014 Apr; 84(4):1074-98. PubMed ID: 24641275 [TBL] [Abstract][Full Text] [Related]
9. Expectations and Outcomes of Reserve Network Performance following Re-zoning of the Great Barrier Reef Marine Park. Emslie MJ; Logan M; Williamson DH; Ayling AM; MacNeil MA; Ceccarelli D; Cheal AJ; Evans RD; Johns KA; Jonker MJ; Miller IR; Osborne K; Russ GR; Sweatman HP Curr Biol; 2015 Apr; 25(8):983-92. PubMed ID: 25819564 [TBL] [Abstract][Full Text] [Related]
10. Spatial and temporal patterns of larval dispersal in a coral-reef fish metapopulation: evidence of variable reproductive success. Pusack TJ; Christie MR; Johnson DW; Stallings CD; Hixon MA Mol Ecol; 2014 Jul; 23(14):3396-408. PubMed ID: 24917250 [TBL] [Abstract][Full Text] [Related]
11. Spatial patterns of self-recruitment of a coral reef fish in relation to island-scale retention mechanisms. Beldade R; Holbrook SJ; Schmitt RJ; Planes S; Bernardi G Mol Ecol; 2016 Oct; 25(20):5203-5211. PubMed ID: 27557731 [TBL] [Abstract][Full Text] [Related]
12. Successful validation of a larval dispersal model using genetic parentage data. Bode M; Leis JM; Mason LB; Williamson DH; Harrison HB; Choukroun S; Jones GP PLoS Biol; 2019 Jul; 17(7):e3000380. PubMed ID: 31299043 [TBL] [Abstract][Full Text] [Related]
13. Integrating larval connectivity with local demography reveals regional dynamics of a marine metapopulation. Johnson DW; Christie MR; Pusack TJ; Stallings CD; Hixon MA Ecology; 2018 Jun; 99(6):1419-1429. PubMed ID: 29856493 [TBL] [Abstract][Full Text] [Related]
14. Patterns and persistence of larval retention and connectivity in a marine fish metapopulation. Saenz-Agudelo P; Jones GP; Thorrold SR; Planes S Mol Ecol; 2012 Oct; 21(19):4695-705. PubMed ID: 22891716 [TBL] [Abstract][Full Text] [Related]
15. Larval connectivity patterns of the North Indo-West Pacific coral reefs. Pata PR; YƱiguez AT PLoS One; 2019; 14(7):e0219913. PubMed ID: 31335893 [TBL] [Abstract][Full Text] [Related]
16. Ongoing effects of no-take marine reserves on commercially exploited coral trout populations on the Great Barrier Reef. Miller I; Cheal AJ; Emslie MJ; Logan M; Sweatman H Mar Environ Res; 2012 Aug; 79():167-70. PubMed ID: 22763179 [TBL] [Abstract][Full Text] [Related]
17. On the spatial scale of dispersal in coral reef fishes. Puebla O; Bermingham E; McMillan WO Mol Ecol; 2012 Dec; 21(23):5675-88. PubMed ID: 22994267 [TBL] [Abstract][Full Text] [Related]
18. Spatial connectivity in an adult-sedentary reef fish with extended pelagic larval phase. Antoni L; Saillant E Mol Ecol; 2017 Oct; 26(19):4955-4965. PubMed ID: 28746775 [TBL] [Abstract][Full Text] [Related]
19. Reproductive benefits of no-take marine reserves vary with region for an exploited coral reef fish. Carter AB; Davies CR; Emslie MJ; Mapstone BD; Russ GR; Tobin AJ; Williams AJ Sci Rep; 2017 Aug; 7(1):9693. PubMed ID: 28852089 [TBL] [Abstract][Full Text] [Related]
20. Genetic assignment of recruits reveals short- and long-distance larval dispersal in Pocillopora damicornis on the Great Barrier Reef. Torda G; Lundgren P; Willis BL; van Oppen MJ Mol Ecol; 2013 Dec; 22(23):5821-34. PubMed ID: 24112610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]