BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27862666)

  • 1. Filling the void-enriching the feature space of successful stopping.
    Huster RJ; Schneider S; Lavallee CF; Enriquez-Geppert S; Herrmann CS
    Hum Brain Mapp; 2017 Mar; 38(3):1333-1346. PubMed ID: 27862666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological activity underlying inhibitory control processes in normal adults.
    Schmajuk M; Liotti M; Busse L; Woldorff MG
    Neuropsychologia; 2006; 44(3):384-95. PubMed ID: 16095637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the cingulate cortex as neural generator of the N200 and P300 in a tactile response inhibition task.
    Huster RJ; Westerhausen R; Pantev C; Konrad C
    Hum Brain Mapp; 2010 Aug; 31(8):1260-71. PubMed ID: 20063362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and effective connectivity of stopping.
    Huster RJ; Plis SM; Lavallee CF; Calhoun VD; Herrmann CS
    Neuroimage; 2014 Jul; 94():120-128. PubMed ID: 24631789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the dependence of response inhibition processes on sensory modality.
    Bodmer B; Beste C
    Hum Brain Mapp; 2017 Apr; 38(4):1941-1951. PubMed ID: 28045223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connectivity and local activity within the fronto-posterior brain network in schizophrenia.
    Sharma A; Weisbrod M; Bender S
    Suppl Clin Neurophysiol; 2013; 62():181-96. PubMed ID: 24053040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses.
    Swann N; Tandon N; Canolty R; Ellmore TM; McEvoy LK; Dreyer S; DiSano M; Aron AR
    J Neurosci; 2009 Oct; 29(40):12675-85. PubMed ID: 19812342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ERP components associated with successful and unsuccessful stopping in a stop-signal task.
    Kok A; Ramautar JR; De Ruiter MB; Band GP; Ridderinkhof KR
    Psychophysiology; 2004 Jan; 41(1):9-20. PubMed ID: 14692996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain oscillation and connectivity during a chemistry visual working memory task.
    Huang LY; She HC; Chou WC; Chuang MH; Duann JR; Jung TP
    Int J Psychophysiol; 2013 Nov; 90(2):172-9. PubMed ID: 23850831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to stop or change a motor response: Laplacian and independent component analysis approach.
    Rangel-Gomez M; Knight RT; Krämer UM
    Int J Psychophysiol; 2015 Sep; 97(3):233-44. PubMed ID: 25660306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural and behavioral correlates of selective stopping: Evidence for a different strategy adoption.
    Sánchez-Carmona AJ; Albert J; Hinojosa JA
    Neuroimage; 2016 Oct; 139():279-293. PubMed ID: 27355436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing stimulus and response codes in theta oscillations in prefrontal areas during inhibitory control of automated responses.
    Mückschel M; Dippel G; Beste C
    Hum Brain Mapp; 2017 Nov; 38(11):5681-5690. PubMed ID: 28782869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing a Right Frontal Beta Signature for Stopping Action in Scalp EEG: Implications for Testing Inhibitory Control in Other Task Contexts.
    Wagner J; Wessel JR; Ghahremani A; Aron AR
    J Cogn Neurosci; 2018 Jan; 30(1):107-118. PubMed ID: 28880766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of selection and inhibition components in a Go/NoGo task from EEG spectra using a machine learning classifier.
    DeLaRosa BL; Spence JS; Motes MA; To W; Vanneste S; Kraut MA; Hart J
    Brain Behav; 2020 Dec; 10(12):e01902. PubMed ID: 33078586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages.
    Tatz JR; Soh C; Wessel JR
    J Neurosci; 2021 Oct; 41(42):8826-8838. PubMed ID: 34493541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A long-range cortical network emerging with theta oscillation in a mental task.
    Mizuhara H; Wang LQ; Kobayashi K; Yamaguchi Y
    Neuroreport; 2004 Jun; 15(8):1233-8. PubMed ID: 15167540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural aftereffects of errors in a stop-signal task.
    Beyer F; Münte TF; Fischer J; Krämer UM
    Neuropsychologia; 2012 Dec; 50(14):3304-12. PubMed ID: 23063968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.