These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27862666)

  • 21. Cognitive, neural and endocrine functioning during late pregnancy: An Event-Related Potentials study.
    Fiterman O; Raz S
    Horm Behav; 2019 Nov; 116():104575. PubMed ID: 31442429
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frontal-midline theta reflects different mechanisms associated with proactive and reactive control of inhibition.
    Messel MS; Raud L; Hoff PK; Stubberud J; Huster RJ
    Neuroimage; 2021 Nov; 241():118400. PubMed ID: 34311382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks.
    González-Villar AJ; Bonilla FM; Carrillo-de-la-Peña MT
    Cogn Affect Behav Neurosci; 2016 Oct; 16(5):825-35. PubMed ID: 27160368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two Independent Frontal Midline Theta Oscillations during Conflict Detection and Adaptation in a Simon-Type Manual Reaching Task.
    Töllner T; Wang Y; Makeig S; Müller HJ; Jung TP; Gramann K
    J Neurosci; 2017 Mar; 37(9):2504-2515. PubMed ID: 28137968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multivariate, spatiotemporal analysis of electromagnetic time-frequency data of recognition memory.
    Düzel E; Habib R; Schott B; Schoenfeld A; Lobaugh N; McIntosh AR; Scholz M; Heinze HJ
    Neuroimage; 2003 Feb; 18(2):185-97. PubMed ID: 12595175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural mechanisms underlying adaptive actions after slips.
    Marco-Pallarés J; Camara E; Münte TF; Rodríguez-Fornells A
    J Cogn Neurosci; 2008 Sep; 20(9):1595-610. PubMed ID: 18345985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping.
    Lavallee CF; Herrmann CS; Weerda R; Huster RJ
    PLoS One; 2014; 9(4):e96159. PubMed ID: 24763435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurocognitive processes mediate the relation between children's motor skills, cardiorespiratory fitness and response inhibition: Evidence from source imaging.
    Ludyga S; Möhring W; Budde H; Hirt N; Pühse U; Gerber M
    Psychophysiology; 2021 Feb; 58(2):e13716. PubMed ID: 33128487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EEG signatures associated with stopping are sensitive to preparation.
    Greenhouse I; Wessel JR
    Psychophysiology; 2013 Sep; 50(9):900-8. PubMed ID: 23763667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.
    Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN
    Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sentential negation modulates inhibition in a stop-signal task. Evidence from behavioral and ERP data.
    Beltrán D; Muñetón-Ayala M; de Vega M
    Neuropsychologia; 2018 Apr; 112():10-18. PubMed ID: 29518413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands.
    Chmielewski WX; Mückschel M; Ziemssen T; Beste C
    Hum Brain Mapp; 2017 Jan; 38(1):68-81. PubMed ID: 27519546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics.
    Deiber MP; Missonnier P; Bertrand O; Gold G; Fazio-Costa L; Ibañez V; Giannakopoulos P
    J Cogn Neurosci; 2007 Jan; 19(1):158-72. PubMed ID: 17214572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time Course of Brain Network Reconfiguration Supporting Inhibitory Control.
    Popov T; Westner BU; Silton RL; Sass SM; Spielberg JM; Rockstroh B; Heller W; Miller GA
    J Neurosci; 2018 May; 38(18):4348-4356. PubMed ID: 29636394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electroencephalography of response inhibition tasks: functional networks and cognitive contributions.
    Huster RJ; Enriquez-Geppert S; Lavallee CF; Falkenstein M; Herrmann CS
    Int J Psychophysiol; 2013 Mar; 87(3):217-33. PubMed ID: 22906815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemifield-dependent N1 and event-related theta/delta oscillations: An unbiased comparison of surface Laplacian and common EEG reference choices.
    Kayser J; Tenke CE
    Int J Psychophysiol; 2015 Sep; 97(3):258-70. PubMed ID: 25562833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibitory motor control based on complex stopping goals relies on the same brain network as simple stopping.
    Wessel JR; Aron AR
    Neuroimage; 2014 Dec; 103():225-234. PubMed ID: 25270603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is cortical distribution of spectral power a stable individual characteristic?
    Knyazev GG
    Int J Psychophysiol; 2009 May; 72(2):123-33. PubMed ID: 19047002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multimodal imaging of functional networks and event-related potentials in performance monitoring.
    Huster RJ; Eichele T; Enriquez-Geppert S; Wollbrink A; Kugel H; Konrad C; Pantev C
    Neuroimage; 2011 Jun; 56(3):1588-97. PubMed ID: 21421060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.