BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27862947)

  • 1. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue.
    Kargozar S; Mozafari M; Hashemian SJ; Brouki Milan P; Hamzehlou S; Soleimani M; Joghataei MT; Gholipourmalekabadi M; Korourian A; Mousavizadeh K; Seifalian AM
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):61-72. PubMed ID: 27862947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo bone regeneration using a bioactive nanocomposite scaffold and human mesenchymal stem cells.
    Andalib N; Kehtari M; Seyedjafari E; Motamed N; Matin MM
    Cell Tissue Bank; 2021 Sep; 22(3):467-477. PubMed ID: 33398491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D magnetic nanocomposite scaffolds enhanced the osteogenic capacities of rat bone mesenchymal stem cells in vitro and in a rat calvarial bone defect model by promoting cell adhesion.
    Han L; Guo Y; Jia L; Zhang Q; Sun L; Yang Z; Dai Y; Lou Z; Xia Y
    J Biomed Mater Res A; 2021 Sep; 109(9):1670-1680. PubMed ID: 33876884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Proteomic Analysis of the Mesenchymal Stem Cells Secretome from Adipose, Bone Marrow, Placenta and Wharton's Jelly.
    Shin S; Lee J; Kwon Y; Park KS; Jeong JH; Choi SJ; Bang SI; Chang JW; Lee C
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells.
    Mohamed-Ahmed S; Yassin MA; Rashad A; Espedal H; Idris SB; Finne-Wistrand A; Mustafa K; Vindenes H; Fristad I
    Cell Tissue Res; 2021 Mar; 383(3):1061-1075. PubMed ID: 33242173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Osteogenesis and Chondrogenesis of Human Decellularized Allogeneic Bone with Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Wharton's Jelly.
    Chen CF; Chen YC; Fu YS; Tsai SW; Wu PK; Chen CM; Chang MC; Chen WM
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic Potential of Sheep Mesenchymal Stem Cells Preconditioned with BMP-2 and FGF-2 and Seeded on an nHAP-Coated PCL/HAP/β-TCP Scaffold.
    Stamnitz S; Krawczenko A; Szałaj U; Górecka Ż; Antończyk A; Kiełbowicz Z; Święszkowski W; Łojkowski W; Klimczak A
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic Potential of Mesenchymal Stem Cells from Adipose Tissue, Bone Marrow and Hair Follicle Outer Root Sheath in a 3D Crosslinked Gelatin-Based Hydrogel.
    Li H; Nawaz HA; Masieri FF; Vogel S; Hempel U; Bartella AK; Zimmerer R; Simon JC; Schulz-Siegmund M; Hacker M; Lethaus B; Savković V
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the osteogenic potential of crocin-incorporated collagen scaffold on the bone marrow mesenchymal stem cells.
    Mirshahi M; Amel Farzad S; Peyvandi M; Hahsemi M; Kalalinia F
    Drug Dev Ind Pharm; 2021 Sep; 47(9):1439-1446. PubMed ID: 34726966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds.
    Gharat TP; Diaz-Rodriguez P; Erndt-Marino JD; Jimenez Vergara AC; Munoz Pinto DJ; Bearden RN; Huggins SS; Grunlan M; Saunders WB; Hahn MS
    J Biomed Mater Res A; 2018 Sep; 106(9):2382-2393. PubMed ID: 29633508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Hydroxyapatite with Bioglass Nanocomposite for Human Wharton's-Jelly-Derived Mesenchymal Stem Cell Growing Substrate.
    Ebrahimi S; Hanim YU; Sipaut CS; Jan NBA; Arshad SE; How SE
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars.
    Xu L; Ding L; Wang L; Cao Y; Zhu H; Lu J; Li X; Song T; Hu Y; Dai J
    Stem Cell Res Ther; 2017 Apr; 8(1):84. PubMed ID: 28420433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of Dental Pulp-derived Stem Cells and Bone Marrowderived Mesenchymal Stromal Cells Implanted into a Murine Critical Bone Defect.
    Vater C; Männel C; Bolte J; Tian X; Goodman SB; Zwingenberger S
    Curr Stem Cell Res Ther; 2022; 17(5):480-491. PubMed ID: 35168511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Craniofacial Bone Regeneration Capacities of Mesenchymal Stem Cells Derived from Human Neural Crest Stem Cells and Bone Marrow.
    Srinivasan A; Teo N; Poon KJ; Tiwari P; Ravichandran A; Wen F; Teoh SH; Lim TC; Toh YC
    ACS Biomater Sci Eng; 2021 Jan; 7(1):207-221. PubMed ID: 33455206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifunctional tissue-engineered composite construct for bone regeneration: The role of copper and fibrin.
    Bozorgi A; Khazaei M; Bozorgi M; Sabouri L; Soleimani M; Jamalpoor Z
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35362. PubMed ID: 38247246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells on Composite Polymeric Scaffolds: A Review.
    Hemati S; Ghiasi M; Salimi A
    Curr Stem Cell Res Ther; 2024 Jan; ():. PubMed ID: 38315659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the colonization and functions of Wharton's Jelly-derived mesenchymal stem cells by a synergetic combination of porous polyurethane scaffold with an albumin-derived hydrogel.
    Lutzweiler G; Barthes J; Charles AL; Ball V; Louis B; Geny B; Vrana NE
    Biomed Mater; 2020 Dec; 16(1):015005. PubMed ID: 33300500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human decellularized bone scaffolds from aged donors show improved osteoinductive capacity compared to young donor bone.
    Smith CA; Board TN; Rooney P; Eagle MJ; Richardson SM; Hoyland JA
    PLoS One; 2017; 12(5):e0177416. PubMed ID: 28505164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of mesenchymal stem cells derived from bone marrow and adipose tissue enhances bone repair in rat calvarial defects.
    Campos Totoli GG; Bighetti-Trevisan RL; Freitas GP; Adolpho LF; Golçalves Almeida AL; Loyola Barbosa AC; Reis Ramos JI; Beloti MM; Rosa AL
    Regen Med; 2023 May; 18(5):377-387. PubMed ID: 37125511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Multichamber Gas System to Examine the Effect of Multiple Oxygen Conditions on Cell Culture.
    Khoury S; Haj Khalil T; Palzur E; Srouji S
    Tissue Eng Part C Methods; 2021 Jan; 27(1):24-34. PubMed ID: 33353455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.