These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27863051)

  • 1. Tailoring Microbial Electrochemical Cells for Production of Hydrogen Peroxide at High Concentrations and Efficiencies.
    Young MN; Links MJ; Popat SC; Rittmann BE; Torres CI
    ChemSusChem; 2016 Dec; 9(23):3345-3352. PubMed ID: 27863051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. H
    Ki D; Popat SC; Rittmann BE; Torres CI
    Environ Sci Technol; 2017 Jun; 51(11):6139-6145. PubMed ID: 28485588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.
    Li W; Bonakdarpour A; Gyenge E; Wilkinson DP
    ChemSusChem; 2013 Nov; 6(11):2137-43. PubMed ID: 24039111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell.
    Villano M; Ralo C; Zeppilli M; Aulenta F; Majone M
    Bioelectrochemistry; 2016 Feb; 107():1-6. PubMed ID: 26342333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities.
    Pasupuleti SB; Srikanth S; Venkata Mohan S; Pant D
    Bioresour Technol; 2015 Nov; 195():131-8. PubMed ID: 26187582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells.
    Gao Y; Ryu H; Santo Domingo JW; Lee HS
    Bioresour Technol; 2014 Feb; 153():245-53. PubMed ID: 24368273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical detection of extracellular hydrogen peroxide in Arabidopsis thaliana: a real-time marker of oxidative stress.
    González-Sánchez MI; González-Macia L; Pérez-Prior MT; Valero E; Hancock J; Killard AJ
    Plant Cell Environ; 2013 Apr; 36(4):869-78. PubMed ID: 23057760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.
    Fornero JJ; Rosenbaum M; Cotta MA; Angenent LT
    Environ Sci Technol; 2010 Apr; 44(7):2728-34. PubMed ID: 20178380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance.
    Rossi R; Baek G; Logan BE
    Environ Sci Technol; 2022 Jan; 56(2):1211-1220. PubMed ID: 34971515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balancing Water Dissociation and Current Densities To Enable Sustainable Hydrogen Production with Bipolar Membranes in Microbial Electrolysis Cells.
    Wang X; Rossi R; Yan Z; Yang W; Hickner MA; Mallouk TE; Logan BE
    Environ Sci Technol; 2019 Dec; 53(24):14761-14768. PubMed ID: 31713416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.
    Sim J; An J; Elbeshbishy E; Ryu H; Lee HS
    Bioresour Technol; 2015 Nov; 195():31-6. PubMed ID: 26141667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the electrode size and arrangement in a microbial electrolysis cell.
    Gil-Carrera L; Mehta P; Escapa A; Morán A; García V; Guiot SR; Tartakovsky B
    Bioresour Technol; 2011 Oct; 102(20):9593-8. PubMed ID: 21875792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of a continuous flow microbial reverse-electrodialysis electrolysis cell using a non-buffered substrate and catholyte effluent addition.
    Hidayat S; Song YH; Park JY
    Bioresour Technol; 2017 Sep; 240():77-83. PubMed ID: 28314667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement.
    Milton RD; Giroud F; Thumser AE; Minteer SD; Slade RC
    Phys Chem Chem Phys; 2013 Nov; 15(44):19371-9. PubMed ID: 24121716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell.
    Luo Y; Zhang R; Liu G; Li J; Qin B; Li M; Chen S
    Bioresour Technol; 2011 Feb; 102(4):3827-32. PubMed ID: 21177097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H
    Rivera I; Bakonyi P; Buitrón G
    Chemosphere; 2017 Mar; 171():379-385. PubMed ID: 28033568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioelectricity Generation in a Microbial Fuel Cell with a Self-Sustainable Photocathode.
    Liu T; Rao L; Yuan Y; Zhuang L
    ScientificWorldJournal; 2015; 2015():864568. PubMed ID: 26065026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors.
    Tartakovsky B; Guiot SR
    Biotechnol Prog; 2006; 22(1):241-6. PubMed ID: 16454516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.