BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27863117)

  • 21. One tone, two ears, three dimensions: a robotic investigation of pinnae movements used by rhinolophid and hipposiderid bats.
    Walker VA; Peremans H; Hallam JC
    J Acoust Soc Am; 1998 Jul; 104(1):569-79. PubMed ID: 9670547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interplay of lancet furrows and shape change in the horseshoe bat noseleaf.
    Gupta AK; Webster D; Müller R
    J Acoust Soc Am; 2015 Nov; 138(5):3188-94. PubMed ID: 26627792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphology suggests noseleaf and pinnae cooperate to enhance bat echolocation.
    Kuc R
    J Acoust Soc Am; 2010 Nov; 128(5):3190-9. PubMed ID: 21110614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (chiroptera).
    Eick GN; Jacobs DS; Matthee CA
    Mol Biol Evol; 2005 Sep; 22(9):1869-86. PubMed ID: 15930153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Internal nasal morphology of the Eocene primate Rooneyia viejaensis and extant Euarchonta: Using μCT scan data to understand and infer patterns of nasal fossa evolution in primates.
    Lundeen IK; Kirk EC
    J Hum Evol; 2019 Jul; 132():137-173. PubMed ID: 31203844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The evolution of echolocation in bats.
    Jones G; Teeling EC
    Trends Ecol Evol; 2006 Mar; 21(3):149-56. PubMed ID: 16701491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dynamic ultrasonic emitter inspired by horseshoe bat noseleaves.
    Fu Y; Caspers P; Müller R
    Bioinspir Biomim; 2016 Apr; 11(3):036007. PubMed ID: 27127194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Support for the allotonic frequency hypothesis in an insectivorous bat community.
    Schoeman MC; Jacobs DS
    Oecologia; 2003 Jan; 134(1):154-62. PubMed ID: 12647192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bat noseleaf model: echolocation function, design considerations, and experimental verification.
    Kuc R
    J Acoust Soc Am; 2011 May; 129(5):3361-6. PubMed ID: 21568436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Entropy analysis of frequency and shape change in horseshoe bat biosonar.
    Gupta AK; Webster D; Müller R
    Phys Rev E; 2018 Jun; 97(6-1):062402. PubMed ID: 30011434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A computational study of the hydrodynamics in the nasal region of a hammerhead shark (Sphyrna tudes): implications for olfaction.
    Rygg AD; Cox JP; Abel R; Webb AG; Smith NB; Craven BA
    PLoS One; 2013; 8(3):e59783. PubMed ID: 23555780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dominant glint based prey localization in horseshoe bats: a possible strategy for noise rejection.
    Vanderelst D; Reijniers J; Firzlaff U; Peremans H
    PLoS Comput Biol; 2011 Dec; 7(12):e1002268. PubMed ID: 22144876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The evolutionary history and ancestral biogeographic range estimation of old-world Rhinolophidae and Hipposideridae (Chiroptera).
    Chornelia A; Hughes AC
    BMC Ecol Evol; 2022 Oct; 22(1):112. PubMed ID: 36192699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of nasal airflow on respiratory and olfactory epithelial distribution in felids.
    Pang B; Yee KK; Lischka FW; Rawson NE; Haskins ME; Wysocki CJ; Craven BA; Van Valkenburgh B
    J Exp Biol; 2016 Jun; 219(Pt 12):1866-74. PubMed ID: 27045093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of a dynamic sonar emitter inspired by hipposiderid bats.
    Yang L; Yu A; Müller R
    Bioinspir Biomim; 2018 Jul; 13(5):056003. PubMed ID: 29916396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Duration-sensitive neurons in the inferior colliculus of horseshoe bats: adaptations for using CF-FM echolocation pulses.
    Luo F; Metzner W; Wu F; Zhang S; Chen Q
    J Neurophysiol; 2008 Jan; 99(1):284-96. PubMed ID: 18003879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation.
    Simmons NB; Seymour KL; Habersetzer J; Gunnell GF
    Nature; 2008 Feb; 451(7180):818-21. PubMed ID: 18270539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Harmonic-hopping in Wallacea's bats.
    Kingston T; Rossiter SJ
    Nature; 2004 Jun; 429(6992):654-7. PubMed ID: 15190351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distribution of olfactory and nonolfactory surface area in the nasal fossa of Microcebus murinus: implications for microcomputed tomography and airflow studies.
    Smith TD; Eiting TP; Rossie JB
    Anat Rec (Hoboken); 2011 Jul; 294(7):1217-25. PubMed ID: 21618705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution of olfactory epithelium in the primate nasal cavity: are microsmia and macrosmia valid morphological concepts?
    Smith TD; Bhatnagar KP; Tuladhar P; Burrows AM
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Nov; 281(1):1173-81. PubMed ID: 15472902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.