These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27863119)

  • 1. Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem.
    Jansson J; Degirmenci NC; Hoffman J
    Int J Numer Method Biomed Eng; 2017 Sep; 33(9):. PubMed ID: 27863119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model.
    SpĆ¼hler JH; Jansson J; Jansson N; Hoffman J
    Front Physiol; 2018; 9():363. PubMed ID: 29713288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite Element Framework for Computational Fluid Dynamics in FEBio.
    Ateshian GA; Shim JJ; Maas SA; Weiss JA
    J Biomech Eng; 2018 Feb; 140(2):0210011-02100117. PubMed ID: 29238817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.
    Vande Geest JP; Simon BR; Rigby PH; Newberg TP
    J Biomech Eng; 2011 Apr; 133(4):044502. PubMed ID: 21428686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-structure interaction modeling of blood flow in the pulmonary arteries using the unified continuum and variational multiscale formulation.
    Liu J; Yang W; Lan IS; Marsden AL
    Mech Res Commun; 2020 Jul; 107():. PubMed ID: 32773906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions.
    Rauch AD; Vuong AT; Yoshihara L; Wall WA
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3139. PubMed ID: 30070046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of nanoparticle transport in airways using Petrov-Galerkin finite element methods.
    Rajaraman P; Heys JJ
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):103-16. PubMed ID: 23982945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite Element Implementation of Biphasic-Fluid Structure Interactions in febio.
    Shim JJ; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33764435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Formulation for Fluid-Structure Interactions in febio Using Mixture Theory.
    Shim JJ; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2019 May; 141(5):0510101-05101015. PubMed ID: 30835271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Unified Framework for Modeling Continuum and Rarefied Gas Flows.
    Xiao H; Tang K
    Sci Rep; 2017 Oct; 7(1):13108. PubMed ID: 29026124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mixed Finite Element Method to Solve the EEG Forward Problem.
    Vorwerk J; Engwer C; Pursiainen S; Wolters CH
    IEEE Trans Med Imaging; 2017 Apr; 36(4):930-941. PubMed ID: 27831869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified continuum and variational multiscale formulation for fluids, solids, and fluid-structure interaction.
    Liu J; Marsden AL
    Comput Methods Appl Mech Eng; 2018 Aug; 337():549-597. PubMed ID: 30505038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent.
    Dumont K; Stijnen JM; Vierendeels J; van de Vosse FN; Verdonck PR
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):139-46. PubMed ID: 15512757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element method for modeling diffusion of alpha-emitting particles in tissue.
    Zhang IP; Cohen GN; Damato AL
    Med Phys; 2024 Mar; 51(3):2263-2276. PubMed ID: 37878762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Unfitted Discontinuous Galerkin Method for Solving the EEG Forward Problem.
    Nusing A; Wolters CH; Brinck H; Engwer C
    IEEE Trans Biomed Eng; 2016 Dec; 63(12):2564-2575. PubMed ID: 27416584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics.
    Sturla F; Votta E; Stevanella M; Conti CA; Redaelli A
    Med Eng Phys; 2013 Dec; 35(12):1721-30. PubMed ID: 24001692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Portable simulation framework for diffusion MRI.
    Nguyen VD; Leoni M; Dancheva T; Jansson J; Hoffman J; Wassermann D; Li JR
    J Magn Reson; 2019 Dec; 309():106611. PubMed ID: 31574354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.