These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27863742)

  • 1. Nanoparticle transport and delivery in a heterogeneous pulmonary vasculature.
    Sohrabi S; Wang S; Tan J; Xu J; Yang J; Liu Y
    J Biomech; 2017 Jan; 50():240-247. PubMed ID: 27863742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of particle transport and deposition in the pulmonary vasculature.
    Sohrabi S; Zheng J; Finol EA; Liu Y
    J Biomech Eng; 2014 Dec; 136(12):121010. PubMed ID: 25322073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function.
    Sohrabi S; Yunus DE; Xu J; Yang J; Liu Y
    Microvasc Res; 2016 Nov; 108():41-7. PubMed ID: 27423938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle transport and deposition in a heterogeneous human lung airway tree: An efficient one path model for CFD simulations.
    Rahman MM; Zhao M; Islam MS; Dong K; Saha SC
    Eur J Pharm Sci; 2022 Oct; 177():106279. PubMed ID: 35985443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung.
    Koullapis PG; Hofemeier P; Sznitman J; Kassinos SC
    Eur J Pharm Sci; 2018 Feb; 113():132-144. PubMed ID: 28917963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a hybrid lung model by combining a real geometry of the upper airways and an idealized geometry of the lower airways.
    Agujetas R; Barrio-Perotti R; Ferrera C; Pandal-Blanco A; Walters DK; Fernández-Tena A
    Comput Methods Programs Biomed; 2020 Nov; 196():105613. PubMed ID: 32593974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico vascular modeling for personalized nanoparticle delivery.
    Hossain SS; Zhang Y; Liang X; Hussain F; Ferrari M; Hughes TJ; Decuzzi P
    Nanomedicine (Lond); 2013 Mar; 8(3):343-57. PubMed ID: 23199308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach to blood flow simulation in vascular networks.
    Tamaddon H; Behnia M; Behnia M; Kritharides L
    Comput Methods Biomech Biomed Engin; 2016; 19(6):673-85. PubMed ID: 26195135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct nanodrug delivery for tumor targeting subject to shear-augmented diffusion in blood flow.
    Xu Z; Kleinstreuer C
    Med Biol Eng Comput; 2018 Nov; 56(11):1949-1958. PubMed ID: 29696590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field.
    Tehrani MD; Yoon JH; Kim MO; Yoon J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):303-13. PubMed ID: 25163053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of oxygen transport in the retinal arterial network.
    Liu D; Wood NB; Witt N; Hughes AD; Thom SA; Xu XY
    Curr Eye Res; 2009 Nov; 34(11):945-56. PubMed ID: 19958111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Study of Particle Transport in Successively Bifurcating Vessels.
    Amili O; Golzarian J; Coletti F
    Ann Biomed Eng; 2019 Nov; 47(11):2271-2283. PubMed ID: 31165293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping deposition of particles in reconstructed models of human arteries.
    Khoury M; Epshtein M; Zidan H; Zukerman H; Korin N
    J Control Release; 2020 Feb; 318():78-85. PubMed ID: 31812540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Particle-Flow CFD Modeling Approach in Truncated Hepatic Arterial Trees for Liver Radioembolization: A Patient-specific Case Study.
    Bomberna T; Vermijs S; Lejoly M; Verslype C; Bonne L; Maleux G; Debbaut C
    Front Bioeng Biotechnol; 2022; 10():914979. PubMed ID: 35711632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying nanoparticle adhesion mediated by specific molecular interactions.
    Haun JB; Hammer DA
    Langmuir; 2008 Aug; 24(16):8821-32. PubMed ID: 18630976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFPD simulation of magnetic drug delivery to a human lung using an SAW nebulizer.
    Mohammadian M; Pourmehran O
    Biomech Model Mechanobiol; 2019 Jun; 18(3):547-562. PubMed ID: 30506148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation.
    Kolanjiyil AV; Kleinstreuer C
    Comput Biol Med; 2016 Dec; 79():193-204. PubMed ID: 27810625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substance deposition assessment in obstructed pulmonary system through numerical characterization of airflow and inhaled particles attributes.
    Lalas A; Nousias S; Kikidis D; Lalos A; Arvanitis G; Sougles C; Moustakas K; Votis K; Verbanck S; Usmani O; Tzovaras D
    BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):173. PubMed ID: 29297393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.