These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27863742)

  • 21. Numerical modeling of nanoparticle deposition in realistic monkey airway and human airway models: a comparative study.
    Dang Khoa N; Phuong NL; Ito K
    Inhal Toxicol; 2020 Jun; 32(7):311-325. PubMed ID: 32729366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational fluid dynamics simulations of particle deposition in large-scale, multigenerational lung models.
    Walters DK; Luke WH
    J Biomech Eng; 2011 Jan; 133(1):011003. PubMed ID: 21186893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.
    Kolanjiyil AV; Kleinstreuer C; Sadikot RT
    Comput Biol Med; 2017 May; 84():247-253. PubMed ID: 27836120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational feasibility of simulating changes in blood flow through whole-organ vascular networks from radiation injury.
    Donahue WP; Newhauser WD; Li X; Chen F; Dey J
    Biomed Phys Eng Express; 2020 Oct; 6(5):055027. PubMed ID: 33444258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery.
    Hewlin RL; Smith M; Kizito JP
    Cardiovasc Eng Technol; 2023 Oct; 14(5):694-712. PubMed ID: 37723333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition.
    Islam MS; Paul G; Ong HX; Young PM; Gu YT; Saha SC
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31935991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data.
    Ahookhosh K; Saidi M; Aminfar H; Mohammadpourfard M; Hamishehkar H; Yaqoubi S
    Int J Pharm; 2020 Sep; 587():119599. PubMed ID: 32663586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes.
    Dukhin SS; Labib ME
    Adv Colloid Interface Sci; 2013 Nov; 199-200():23-43. PubMed ID: 23859221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulmonary targeting of nanoparticle drug matrices.
    Dandekar P; Venkataraman C; Mehra A
    J Aerosol Med Pulm Drug Deliv; 2010 Dec; 23(6):343-53. PubMed ID: 20455773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pulmonary drug delivery with aerosolizable nanoparticles in an ex vivo lung model.
    Beck-Broichsitter M; Gauss J; Packhaeuser CB; Lahnstein K; Schmehl T; Seeger W; Kissel T; Gessler T
    Int J Pharm; 2009 Feb; 367(1-2):169-78. PubMed ID: 18848609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles.
    Islam MA; Barua S; Barua D
    BMC Syst Biol; 2017 Nov; 11(1):113. PubMed ID: 29178887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Distributed Lumped Parameter Model of Blood Flow.
    Mirramezani M; Shadden SC
    Ann Biomed Eng; 2020 Dec; 48(12):2870-2886. PubMed ID: 32613457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.
    O'Dell WG; Gormaley AK; Prida DA
    Med Phys; 2017 Dec; 44(12):6314-6328. PubMed ID: 28905390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration.
    Amrite AC; Edelhauser HF; Singh SR; Kompella UB
    Mol Vis; 2008 Jan; 14():150-60. PubMed ID: 18334929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The fate of MAb-targeted Cd(125m)Te/ZnS nanoparticles in vivo.
    Kennel SJ; Woodward JD; Rondinone AJ; Wall J; Huang Y; Mirzadeh S
    Nucl Med Biol; 2008 May; 35(4):501-14. PubMed ID: 18482688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A 1D-0D-3D coupled model for simulating blood flow and transport processes in breast tissue.
    Fritz M; Köppl T; Oden JT; Wagner A; Wohlmuth B; Wu C
    Int J Numer Method Biomed Eng; 2022 Jul; 38(7):e3612. PubMed ID: 35522186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupled Particulate and Continuum Model for Nanoparticle Targeted Delivery.
    Tan J; Wang S; Yang J; Liu Y
    Comput Struct; 2013 Jun; 122():128-134. PubMed ID: 23729869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Image-based computational assessment of vascular wall mechanics and hemodynamics in pulmonary arterial hypertension patients.
    Zambrano BA; McLean NA; Zhao X; Tan JL; Zhong L; Figueroa CA; Lee LC; Baek S
    J Biomech; 2018 Feb; 68():84-92. PubMed ID: 29310945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physical determinants of vascular network remodeling during tumor growth.
    Welter M; Rieger H
    Eur Phys J E Soft Matter; 2010 Oct; 33(2):149-63. PubMed ID: 20607341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery (review).
    Huang RB; Mocherla S; Heslinga MJ; Charoenphol P; Eniola-Adefeso O
    Mol Membr Biol; 2010 Aug; 27(4-6):190-205. PubMed ID: 20615080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.