These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27863742)

  • 41. A Mock Circulatory System Incorporating a Compliant 3D-Printed Anatomical Model to Investigate Pulmonary Hemodynamics.
    Knoops PGM; Biglino G; Hughes AD; Parker KH; Xu L; Schievano S; Torii R
    Artif Organs; 2017 Jul; 41(7):637-646. PubMed ID: 27925228
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An integrated geometric modelling framework for patient-specific computational haemodynamic study on wide-ranged vascular network.
    Torii R; Oshima M
    Comput Methods Biomech Biomed Engin; 2012; 15(6):615-25. PubMed ID: 21736445
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoparticle-based CT visualization of pulmonary vasculature for minimally-invasive thoracic surgery planning.
    Hu HP; Chan H; Ujiie H; Bernards N; Fujino K; Irish JC; Zheng J; Yasufuku K
    PLoS One; 2019; 14(1):e0209501. PubMed ID: 30653521
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanoparticle localization in blood vessels: dependence on fluid shear stress, flow disturbances, and flow-induced changes in endothelial physiology.
    Gomez-Garcia MJ; Doiron AL; Steele RRM; Labouta HI; Vafadar B; Shepherd RD; Gates ID; Cramb DT; Childs SJ; Rinker KD
    Nanoscale; 2018 Aug; 10(32):15249-15261. PubMed ID: 30066709
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of a numerical model of lung by means of a special boundary condition in the truncated branches.
    Tena AF; Fernández J; Álvarez E; Casan P; Walters DK
    Int J Numer Method Biomed Eng; 2017 Jun; 33(6):. PubMed ID: 27595502
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An effective model of blood flow in capillary beds.
    Acosta S; Penny DJ; Rusin CG
    Microvasc Res; 2015 Jul; 100():40-7. PubMed ID: 25936622
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A computed tomography imaging-based subject-specific whole-lung deposition model.
    Zhang X; Li F; Rajaraman PK; Choi J; Comellas AP; Hoffman EA; Smith BM; Lin CL
    Eur J Pharm Sci; 2022 Oct; 177():106272. PubMed ID: 35908637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.
    Weng HC
    J Biomech Eng; 2013 Mar; 135(3):34504. PubMed ID: 24231820
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simulating the effect of individual upper airway anatomical features on drug deposition.
    Ma Z; Kourmatzis A; Milton-McGurk L; Chan HK; Farina D; Cheng S
    Int J Pharm; 2022 Nov; 628():122219. PubMed ID: 36179925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding the effects of inhaler resistance on particle deposition behaviour - A computational modelling study.
    Cai X; Dong J; Milton-McGurk L; Lee A; Shen Z; Chan HK; Kourmatzis A; Cheng S
    Comput Biol Med; 2023 Dec; 167():107673. PubMed ID: 37956626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery.
    Newby JM; Seim I; Lysy M; Ling Y; Huckaby J; Lai SK; Forest MG
    Adv Drug Deliv Rev; 2018 Jan; 124():64-81. PubMed ID: 29246855
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhaled Aerosol Distribution in Human Airways: A Scintigraphy-Guided Study in a 3D Printed Model.
    Verbanck S; Ghorbaniasl G; Biddiscombe MF; Dragojlovic D; Ricks N; Lacor C; Ilsen B; de Mey J; Schuermans D; Underwood SR; Barnes PJ; Vincken W; Usmani OS
    J Aerosol Med Pulm Drug Deliv; 2016 Dec; 29(6):525-533. PubMed ID: 27337643
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics.
    van Ertbruggen C; Hirsch C; Paiva M
    J Appl Physiol (1985); 2005 Mar; 98(3):970-80. PubMed ID: 15501925
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients.
    Yang W; Dong M; Rabinovitch M; Chan FP; Marsden AL; Feinstein JA
    Biomech Model Mechanobiol; 2019 Jun; 18(3):779-796. PubMed ID: 30635853
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Numerical analysis of micro- and nano-particle deposition in a realistic human upper airway.
    Farhadi Ghalati P; Keshavarzian E; Abouali O; Faramarzi A; Tu J; Shakibafard A
    Comput Biol Med; 2012 Jan; 42(1):39-49. PubMed ID: 22061046
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Margination of micro- and nano-particles in blood flow and its effect on drug delivery.
    Müller K; Fedosov DA; Gompper G
    Sci Rep; 2014 May; 4():4871. PubMed ID: 24786000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A meshless rheological model for blood-vessel interaction in endovascular simulation.
    Chui YP; Heng PA
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):252-61. PubMed ID: 20868705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling particle shape-dependent dynamics in nanomedicine.
    Shah S; Liu Y; Hu W; Gao J
    J Nanosci Nanotechnol; 2011 Feb; 11(2):919-28. PubMed ID: 21399713
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deposition of ultrafine (nano) particles in the human lung.
    Asgharian B; Price OT
    Inhal Toxicol; 2007 Oct; 19(13):1045-54. PubMed ID: 17957545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.