These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 27863796)

  • 1. Reprint of "Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus".
    Borghese R; Brucale M; Fortunato G; Lanzi M; Mezzi A; Valle F; Cavallini M; Zannoni D
    J Hazard Mater; 2017 Feb; 324(Pt A):31-38. PubMed ID: 27863796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus.
    Borghese R; Brucale M; Fortunato G; Lanzi M; Mezzi A; Valle F; Cavallini M; Zannoni D
    J Hazard Mater; 2016 May; 309():202-9. PubMed ID: 26894294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and electrochemical characterization of lawsone-dependent production of tellurium-metal nanoprecipitates by photosynthetic cells of Rhodobacter capsulatus.
    Borghese R; Malferrari M; Brucale M; Ortolani L; Franchini M; Rapino S; Borsetti F; Zannoni D
    Bioelectrochemistry; 2020 Jun; 133():107456. PubMed ID: 32007911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus.
    Borghese R; Baccolini C; Francia F; Sabatino P; Turner RJ; Zannoni D
    J Hazard Mater; 2014 Mar; 269():24-30. PubMed ID: 24462199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The highly toxic oxyanion tellurite (TeO (3) (2-) ) enters the phototrophic bacterium Rhodobacter capsulatus via an as yet uncharacterized monocarboxylate transport system.
    Borghese R; Marchetti D; Zannoni D
    Arch Microbiol; 2008 Feb; 189(2):93-100. PubMed ID: 17713758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the metalloid oxyanion tellurite (TeO32-) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus.
    Borghese R; Borsetti F; Foladori P; Ziglio G; Zannoni D
    Appl Environ Microbiol; 2004 Nov; 70(11):6595-602. PubMed ID: 15528523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles.
    Zonaro E; Piacenza E; Presentato A; Monti F; Dell'Anna R; Lampis S; Vallini G
    Microb Cell Fact; 2017 Nov; 16(1):215. PubMed ID: 29183326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fructose increases the resistance of Rhodobacter capsulatus to the toxic oxyanion tellurite through repression of acetate permease (ActP).
    Borghese R; Cicerano S; Zannoni D
    Antonie Van Leeuwenhoek; 2011 Nov; 100(4):655-8. PubMed ID: 21735076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of potassium tellurite to elemental tellurium and its effect on the plasma membrane redox components of the facultative phototroph Rhodobacter capsulatus.
    Borsetti F; Borghese R; Francia F; Randi MR; Fedi S; Zannoni D
    Protoplasma; 2003 May; 221(1-2):153-61. PubMed ID: 12768353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis and Characterization of Biogenic Tellurium Nanoparticles by Using
    Barabadi H; Kobarfard F; Vahidi H
    Iran J Pharm Res; 2018; 17(Suppl2):87-97. PubMed ID: 31011345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined single cell and single particle ICP-TQ-MS analysis to quantitatively evaluate the uptake and biotransformation of tellurium nanoparticles in bacteria.
    Gomez-Gomez B; Corte-Rodríguez M; Perez-Corona MT; Bettmer J; Montes-Bayón M; Madrid Y
    Anal Chim Acta; 2020 Sep; 1128():116-128. PubMed ID: 32825896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thiol:disulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite (TeO32-) on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus.
    Borsetti F; Francia F; Turner RJ; Zannoni D
    J Bacteriol; 2007 Feb; 189(3):851-9. PubMed ID: 17098900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of a specific insert in acetate permeases (ActP) for tellurite uptake in bacteria: Functional and structural studies.
    Borghese R; Canducci L; Musiani F; Cappelletti M; Ciurli S; Turner RJ; Zannoni D
    J Inorg Biochem; 2016 Oct; 163():103-109. PubMed ID: 27421695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous bioremediation of phenol and tellurite by Lysinibacillus sp. EBL303 and characterization of biosynthesized Te nanoparticles.
    Hosseini F; Lashani E; Moghimi H
    Sci Rep; 2023 Jan; 13(1):1243. PubMed ID: 36690691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tellurite biotransformation and detoxification by Shewanella baltica with simultaneous synthesis of tellurium nanorods exhibiting photo-catalytic and anti-biofilm activity.
    Vaigankar DC; Dubey SK; Mujawar SY; D'Costa A; S K S
    Ecotoxicol Environ Saf; 2018 Dec; 165():516-526. PubMed ID: 30223164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions.
    Borsetti F; Tremaroli V; Michelacci F; Borghese R; Winterstein C; Daldal F; Zannoni D
    Res Microbiol; 2005 Aug; 156(7):807-13. PubMed ID: 15946826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions.
    Presentato A; Piacenza E; Anikovskiy M; Cappelletti M; Zannoni D; Turner RJ
    Microb Cell Fact; 2016 Dec; 15(1):204. PubMed ID: 27978836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of Novel Tellurium Nanorods by
    Abd El-Ghany MN; Hamdi SA; Korany SM; Elbaz RM; Farahat MG
    Microorganisms; 2023 Feb; 11(3):. PubMed ID: 36985132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration mechanism of bioavailable Fe(Ⅲ) on Te(IV) bioreduction of Shewanella oneidensis MR-1: Promotion of electron generation, electron transfer and energy level.
    He Y; Guo J; Song Y; Chen Z; Lu C; Han Y; Li H; Hou Y; Zhao R
    J Hazard Mater; 2021 Feb; 403():123728. PubMed ID: 32853890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green synthesis of biogenetic Te(0) nanoparticles by high tellurite tolerance fungus
    Ao B; He F; Lv J; Tu J; Tan Z; Jiang H; Shi X; Li J; Hou J; Hu Y; Xia X
    Front Microbiol; 2022; 13():1020179. PubMed ID: 36274686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.