These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 27864051)

  • 1. Individual differences in speech-in-noise perception parallel neural speech processing and attention in preschoolers.
    Thompson EC; Woodruff Carr K; White-Schwoch T; Otto-Meyer S; Kraus N
    Hear Res; 2017 Feb; 344():148-157. PubMed ID: 27864051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brainstem correlates of speech-in-noise perception in children.
    Anderson S; Skoe E; Chandrasekaran B; Zecker S; Kraus N
    Hear Res; 2010 Dec; 270(1-2):151-7. PubMed ID: 20708671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic auditory-cognitive system supports speech-in-noise perception in older adults.
    Anderson S; White-Schwoch T; Parbery-Clark A; Kraus N
    Hear Res; 2013 Jun; 300():18-32. PubMed ID: 23541911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brainstem-cortical functional connectivity for speech is differentially challenged by noise and reverberation.
    Bidelman GM; Davis MK; Pridgen MH
    Hear Res; 2018 Sep; 367():149-160. PubMed ID: 29871826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Objective neural indices of speech-in-noise perception.
    Anderson S; Kraus N
    Trends Amplif; 2010 Jun; 14(2):73-83. PubMed ID: 20724355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of competing noise on cortical auditory evoked potentials elicited by speech sounds in 7- to 25-year-old listeners.
    Gustafson SJ; Billings CJ; Hornsby BWY; Key AP
    Hear Res; 2019 Mar; 373():103-112. PubMed ID: 30660965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theta, beta and gamma rate modulations in the developing auditory system.
    Vanvooren S; Hofmann M; Poelmans H; Ghesquière P; Wouters J
    Hear Res; 2015 Sep; 327():153-62. PubMed ID: 26117409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study.
    Wijayasiri P; Hartley DEH; Wiggins IM
    Hear Res; 2017 Aug; 351():55-67. PubMed ID: 28571617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic richness modulates the neural networks supporting intelligible speech processing.
    Lee YS; Min NE; Wingfield A; Grossman M; Peelle JE
    Hear Res; 2016 Mar; 333():108-117. PubMed ID: 26723103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Masked speech perception across the adult lifespan: Impact of age and hearing impairment.
    Goossens T; Vercammen C; Wouters J; van Wieringen A
    Hear Res; 2017 Feb; 344():109-124. PubMed ID: 27845259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sentence intelligibility during segmental interruption and masking by speech-modulated noise: Effects of age and hearing loss.
    Fogerty D; Ahlstrom JB; Bologna WJ; Dubno JR
    J Acoust Soc Am; 2015 Jun; 137(6):3487-501. PubMed ID: 26093436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sentence perception in listening conditions having similar speech intelligibility indices.
    Gustafson SJ; Pittman AL
    Int J Audiol; 2011 Jan; 50(1):34-40. PubMed ID: 21047291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent-efferent connectivity between auditory brainstem and cortex accounts for poorer speech-in-noise comprehension in older adults.
    Bidelman GM; Price CN; Shen D; Arnott SR; Alain C
    Hear Res; 2019 Oct; 382():107795. PubMed ID: 31479953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise.
    White-Schwoch T; Davies EC; Thompson EC; Woodruff Carr K; Nicol T; Bradlow AR; Kraus N
    Hear Res; 2015 Oct; 328():34-47. PubMed ID: 26113025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech perception in tinnitus is related to individual distress level - A neurophysiological study.
    Jagoda L; Giroud N; Neff P; Kegel A; Kleinjung T; Meyer M
    Hear Res; 2018 Sep; 367():48-58. PubMed ID: 30031353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural indices of phonemic discrimination and sentence-level speech intelligibility in quiet and noise: A P3 study.
    Koerner TK; Zhang Y; Nelson PB; Wang B; Zou H
    Hear Res; 2017 Jul; 350():58-67. PubMed ID: 28441570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise and pitch interact during the cortical segregation of concurrent speech.
    Bidelman GM; Yellamsetty A
    Hear Res; 2017 Aug; 351():34-44. PubMed ID: 28578876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can older adults enhance the intelligibility of their speech?
    Smiljanic R
    J Acoust Soc Am; 2013 Feb; 133(2):EL129-35. PubMed ID: 23363193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pure linguistic interference during comprehension of competing speech signals.
    Dai B; McQueen JM; Hagoort P; Kösem A
    J Acoust Soc Am; 2017 Mar; 141(3):EL249. PubMed ID: 28372048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linguistic, perceptual, and cognitive factors underlying musicians' benefits in noise-degraded speech perception.
    Yoo J; Bidelman GM
    Hear Res; 2019 Jun; 377():189-195. PubMed ID: 30978607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.