These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 27864076)
1. Electric field as a potential directional cue in homing of bone marrow-derived mesenchymal stem cells to cutaneous wounds. Zimolag E; Borowczyk-Michalowska J; Kedracka-Krok S; Skupien-Rabian B; Karnas E; Lasota S; Sroka J; Drukala J; Madeja Z Biochim Biophys Acta Mol Cell Res; 2017 Feb; 1864(2):267-279. PubMed ID: 27864076 [TBL] [Abstract][Full Text] [Related]
2. Direct comparison of the potency of human mesenchymal stem cells derived from amnion tissue, bone marrow and adipose tissue at inducing dermal fibroblast responses to cutaneous wounds. Liu X; Wang Z; Wang R; Zhao F; Shi P; Jiang Y; Pang X Int J Mol Med; 2013 Feb; 31(2):407-15. PubMed ID: 23228965 [TBL] [Abstract][Full Text] [Related]
3. Effects of electric fields on human mesenchymal stem cell behaviour and morphology using a novel multichannel device. Banks TA; Luckman PS; Frith JE; Cooper-White JJ Integr Biol (Camb); 2015 Jun; 7(6):693-712. PubMed ID: 25988194 [TBL] [Abstract][Full Text] [Related]
4. Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field. Zhao Z; Watt C; Karystinou A; Roelofs AJ; McCaig CD; Gibson IR; De Bari C Eur Cell Mater; 2011 Nov; 22():344-58. PubMed ID: 22125259 [TBL] [Abstract][Full Text] [Related]
5. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing. Rodriguez-Menocal L; Shareef S; Salgado M; Shabbir A; Van Badiavas E Stem Cell Res Ther; 2015 Mar; 6(1):24. PubMed ID: 25881077 [TBL] [Abstract][Full Text] [Related]
6. The role of bone marrow mesenchymal stromal cell derivatives in skin wound healing in diabetic mice. de Mayo T; Conget P; Becerra-Bayona S; Sossa CL; Galvis V; Arango-Rodríguez ML PLoS One; 2017; 12(6):e0177533. PubMed ID: 28594903 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of the mesenchymal stem cell Cxcr4 gene in irradiated mice increases the homing capacity of these cells. Chen W; Li M; Cheng H; Yan Z; Cao J; Pan B; Sang W; Wu Q; Zeng L; Li Z; Xu K Cell Biochem Biophys; 2013; 67(3):1181-91. PubMed ID: 23712865 [TBL] [Abstract][Full Text] [Related]
8. Electrotaxis: Cell Directional Movement in Electric Fields. Sroka J; Zimolag E; Lasota S; Korohoda W; Madeja Z Methods Mol Biol; 2018; 1749():325-340. PubMed ID: 29526007 [TBL] [Abstract][Full Text] [Related]
9. Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism. Hart FX; Laird M; Riding A; Pullar CE Bioelectromagnetics; 2013 Feb; 34(2):85-94. PubMed ID: 22907479 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of bone marrow derived mesenchymal stem cells for full-thickness wound healing in comparison to tissue engineered chitosan scaffold in rabbit. Rajabian MH; Ghorabi GH; Geramizadeh B; Sameni S; Ayatollahi M Tissue Cell; 2017 Feb; 49(1):112-121. PubMed ID: 27865438 [TBL] [Abstract][Full Text] [Related]
11. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. Huang S; Lu G; Wu Y; Jirigala E; Xu Y; Ma K; Fu X J Dermatol Sci; 2012 Apr; 66(1):29-36. PubMed ID: 22398148 [TBL] [Abstract][Full Text] [Related]
12. Electrotaxis and wound healing: experimental methods to study electric fields as a directional signal for cell migration. Tai G; Reid B; Cao L; Zhao M Methods Mol Biol; 2009; 571():77-97. PubMed ID: 19763960 [TBL] [Abstract][Full Text] [Related]
13. Effect of osteopontin in regulating bone marrow mesenchymal stem cell treatment of skin wounds in diabetic mice. Meng H; Wang Z; Wang W; Li W; Wu Q; Lei X; Ouyang X; Liang Z Diabetes Metab Res Rev; 2014 Sep; 30(6):457-66. PubMed ID: 24827928 [TBL] [Abstract][Full Text] [Related]
14. Bone marrow-derived mesenchymal stem cells laden novel thermo-sensitive hydrogel for the management of severe skin wound healing. Lei Z; Singh G; Min Z; Shixuan C; Xu K; Pengcheng X; Xueer W; Yinghua C; Lu Z; Lin Z Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():159-167. PubMed ID: 29853078 [TBL] [Abstract][Full Text] [Related]
16. Effect of Allogeneic Bone Marrow-mesenchymal Stem Cells (BM-MSCs) to Accelerate Burn Healing of Rat on the Expression of Collagen Type I and Integrin α2β1. Revilla G; Darwin E; Yanwirasti ; Rantam FA Pak J Biol Sci; 2016; 19(8-9):345-351. PubMed ID: 29023021 [TBL] [Abstract][Full Text] [Related]
17. Prioritising guidance cues: directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch. Rajnicek AM; Foubister LE; McCaig CD Dev Biol; 2007 Dec; 312(1):448-60. PubMed ID: 17976566 [TBL] [Abstract][Full Text] [Related]
18. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Fathke C; Wilson L; Hutter J; Kapoor V; Smith A; Hocking A; Isik F Stem Cells; 2004; 22(5):812-22. PubMed ID: 15342945 [TBL] [Abstract][Full Text] [Related]
19. Enhanced wound healing by topical administration of mesenchymal stem cells transfected with stromal cell-derived factor-1. Nakamura Y; Ishikawa H; Kawai K; Tabata Y; Suzuki S Biomaterials; 2013 Dec; 34(37):9393-400. PubMed ID: 24054847 [TBL] [Abstract][Full Text] [Related]
20. Quantification of MSCs involved in wound healing: use of SIS to transfer MSCs to wound site and quantification of MSCs involved in skin wound healing. Yeum CE; Park EY; Lee SB; Chun HJ; Chae GT J Tissue Eng Regen Med; 2013 Apr; 7(4):279-91. PubMed ID: 22278819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]