These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 27864084)

  • 1. Development and regeneration of vestibular hair cells in mammals.
    Burns JC; Stone JS
    Semin Cell Dev Biol; 2017 May; 65():96-105. PubMed ID: 27864084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle regulation in the inner ear sensory epithelia: role of cyclin D1 and cyclin-dependent kinase inhibitors.
    Laine H; Sulg M; Kirjavainen A; Pirvola U
    Dev Biol; 2010 Jan; 337(1):134-46. PubMed ID: 19854167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sox2 is required in supporting cells for normal levels of vestibular hair cell regeneration in adult mice.
    Ciani Berlingeri AN; Pujol R; Cox BC; Stone JS
    Hear Res; 2022 Dec; 426():108642. PubMed ID: 36334348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lineage analysis of the late otocyst stage mouse inner ear by transuterine microinjection of a retroviral vector encoding alkaline phosphatase and an oligonucleotide library.
    Jiang H; Wang L; Beier KT; Cepko CL; Fekete DM; Brigande JV
    PLoS One; 2013; 8(7):e69314. PubMed ID: 23935981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atoh1 is required in supporting cells for regeneration of vestibular hair cells in adult mice.
    Hicks KL; Wisner SR; Cox BC; Stone JS
    Hear Res; 2020 Jan; 385():107838. PubMed ID: 31751832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hair cell regeneration in the avian auditory epithelium.
    Stone JS; Cotanche DA
    Int J Dev Biol; 2007; 51(6-7):633-47. PubMed ID: 17891722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The postnatal accumulation of junctional E-cadherin is inversely correlated with the capacity for supporting cells to convert directly into sensory hair cells in mammalian balance organs.
    Collado MS; Thiede BR; Baker W; Askew C; Igbani LM; Corwin JT
    J Neurosci; 2011 Aug; 31(33):11855-66. PubMed ID: 21849546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Differentiation Status of Hair Cells That Regenerate Naturally in the Vestibular Inner Ear of the Adult Mouse.
    González-Garrido A; Pujol R; López-Ramírez O; Finkbeiner C; Eatock RA; Stone JS
    J Neurosci; 2021 Sep; 41(37):7779-7796. PubMed ID: 34301830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADAM10 and γ-secretase regulate sensory regeneration in the avian vestibular organs.
    Warchol ME; Stone J; Barton M; Ku J; Veile R; Daudet N; Lovett M
    Dev Biol; 2017 Aug; 428(1):39-51. PubMed ID: 28526588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hair cell regeneration in the inner ear.
    Tsue TT; Oesterle EC; Rubel EW
    Otolaryngol Head Neck Surg; 1994 Sep; 111(3 Pt 1):281-301. PubMed ID: 8084636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of hair cells in the mammalian vestibular system.
    Li W; You D; Chen Y; Chai R; Li H
    Front Med; 2016 Jun; 10(2):143-51. PubMed ID: 27189205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells.
    Wang T; Niwa M; Sayyid ZN; Hosseini DK; Pham N; Jones SM; Ricci AJ; Cheng AG
    PLoS Biol; 2019 Jul; 17(7):e3000326. PubMed ID: 31260439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of rat vestibular hair cell development and regeneration using calretinin as an early marker.
    Zheng JL; Gao WQ
    J Neurosci; 1997 Nov; 17(21):8270-82. PubMed ID: 9334402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into inner ear-specific gene regulation: Epigenetics and non-coding RNAs in inner ear development and regeneration.
    Doetzlhofer A; Avraham KB
    Semin Cell Dev Biol; 2017 May; 65():69-79. PubMed ID: 27836639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice.
    Hu L; Lu J; Chiang H; Wu H; Edge AS; Shi F
    J Neurosci; 2016 Sep; 36(36):9479-89. PubMed ID: 27605621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Key Transcription Factor Expression in the Developing Vestibular and Auditory Sensory Organs: A Comprehensive Comparison of Spatial and Temporal Patterns.
    Liu S; Wang Y; Lu Y; Li W; Liu W; Ma J; Sun F; Li M; Chen ZY; Su K; Li W
    Neural Plast; 2018; 2018():7513258. PubMed ID: 30410537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing atoh1-induced vestibular hair cell regeneration.
    Staecker H; Schlecker C; Kraft S; Praetorius M; Hsu C; Brough DE
    Laryngoscope; 2014 Oct; 124 Suppl 5(Suppl 5):S1-S12. PubMed ID: 24938696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereocilia Rootlets: Actin-Based Structures That Are Essential for Structural Stability of the Hair Bundle.
    Pacentine I; Chatterjee P; Barr-Gillespie PG
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31947734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.
    Fujimoto C; Ozeki H; Uchijima Y; Suzukawa K; Mitani A; Fukuhara S; Nishiyama K; Kurihara Y; Kondo K; Aburatani H; Kaga K; Yamasoba T; Kurihara H
    J Comp Neurol; 2010 Dec; 518(23):4702-22. PubMed ID: 20963824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation arrest in early postnatal sensory receptors by deletion of the miR-183/96/182 cluster in mouse.
    Fan J; Jia L; Li Y; Ebrahim S; May-Simera H; Wood A; Morell RJ; Liu P; Lei J; Kachar B; Belluscio L; Qian H; Li T; Li W; Wistow G; Dong L
    Proc Natl Acad Sci U S A; 2017 May; 114(21):E4271-E4280. PubMed ID: 28484004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.