BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27864973)

  • 1. The evolution of symbiont preference traits in the model legume Medicago truncatula.
    Batstone RT; Dutton EM; Wang D; Yang M; Frederickson ME
    New Phytol; 2017 Mar; 213(4):1850-1861. PubMed ID: 27864973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen addition does not influence pre-infection partner choice in the legume-rhizobium symbiosis.
    Grillo MA; Stinchcombe JR; Heath KD
    Am J Bot; 2016 Oct; 103(10):1763-1770. PubMed ID: 27671532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic basis of genome by genome variation in a legume-rhizobia mutualism.
    Burghardt LT; Guhlin J; Chun CL; Liu J; Sadowsky MJ; Stupar RM; Young ND; Tiffin P
    Mol Ecol; 2017 Nov; 26(21):6122-6135. PubMed ID: 28792680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partner choice in Medicago truncatula-Sinorhizobium symbiosis.
    Gubry-Rangin C; Garcia M; Béna G
    Proc Biol Sci; 2010 Jul; 277(1690):1947-51. PubMed ID: 20200033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis.
    Pfeilmeier S; George J; Morel A; Roy S; Smoker M; Stransfeld L; Downie JA; Peeters N; Malone JG; Zipfel C
    Plant Biotechnol J; 2019 Mar; 17(3):569-579. PubMed ID: 30120864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula.
    Brown SP; Grillo MA; Podowski JC; Heath KD
    Microbiome; 2020 Sep; 8(1):139. PubMed ID: 32988416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation.
    Goh CH; Nicotra AB; Mathesius U
    Plant Cell Environ; 2016 Apr; 39(4):883-96. PubMed ID: 26523414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago truncatula.
    Gorton AJ; Heath KD; Pilet-Nayel ML; Baranger A; Stinchcombe JR
    G3 (Bethesda); 2012 Nov; 2(11):1291-303. PubMed ID: 23173081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response.
    Veereshlingam H; Haynes JG; Penmetsa RV; Cook DR; Sherrier DJ; Dickstein R
    Plant Physiol; 2004 Nov; 136(3):3692-702. PubMed ID: 15516506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining GWAS and population genomic analyses to characterize coevolution in a legume-rhizobia symbiosis.
    Epstein B; Burghardt LT; Heath KD; Grillo MA; Kostanecki A; Hämälä T; Young ND; Tiffin P
    Mol Ecol; 2023 Jul; 32(14):3798-3811. PubMed ID: 35793264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific Host-Responsive Associations Between Medicago truncatula Accessions and Sinorhizobium Strains.
    Kazmierczak T; Nagymihály M; Lamouche F; Barrière Q; Guefrachi I; Alunni B; Ouadghiri M; Ibijbijen J; Kondorosi É; Mergaert P; Gruber V
    Mol Plant Microbe Interact; 2017 May; 30(5):399-409. PubMed ID: 28437159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity.
    Lohar DP; VandenBosch KA
    J Exp Bot; 2005 Jun; 56(416):1643-50. PubMed ID: 15824071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection for cheating across disparate environments in the legume-rhizobium mutualism.
    Porter SS; Simms EL
    Ecol Lett; 2014 Sep; 17(9):1121-9. PubMed ID: 25039752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilizing mechanisms in a legume-rhizobium mutualism.
    Heath KD; Tiffin P
    Evolution; 2009 Mar; 63(3):652-62. PubMed ID: 19087187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Potential for Genotype-by-Environment Interactions to Maintain Genetic Variation in a Model Legume-Rhizobia Mutualism.
    Vaidya P; Stinchcombe JR
    Plant Commun; 2020 Nov; 1(6):100114. PubMed ID: 33367267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus.
    Suzaki T; Takeda N; Nishida H; Hoshino M; Ito M; Misawa F; Handa Y; Miura K; Kawaguchi M
    PLoS Genet; 2019 Jan; 15(1):e1007865. PubMed ID: 30605473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula.
    Kafle A; Garcia K; Wang X; Pfeffer PE; Strahan GD; Bücking H
    Plant Cell Environ; 2019 Jan; 42(1):270-284. PubMed ID: 29859016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Phytocyanin Gene Family in Legume Plants and their Involvement in Nodulation of Medicago truncatula.
    Sun Y; Wu Z; Wang Y; Yang J; Wei G; Chou M
    Plant Cell Physiol; 2019 Apr; 60(4):900-915. PubMed ID: 30649463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Resource Partitioning Coordinates Nitrogen and Rhizobia Responses and Autoregulation of Nodulation in Medicago truncatula.
    Lagunas B; Achom M; Bonyadi-Pour R; Pardal AJ; Richmond BL; Sergaki C; Vázquez S; Schäfer P; Ott S; Hammond J; Gifford ML
    Mol Plant; 2019 Jun; 12(6):833-846. PubMed ID: 30953787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The LATD gene of Medicago truncatula is required for both nodule and root development.
    Bright LJ; Liang Y; Mitchell DM; Harris JM
    Mol Plant Microbe Interact; 2005 Jun; 18(6):521-32. PubMed ID: 15986921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.