These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fabrication and characterization of electrospun laminin-functionalized silk fibroin/poly(ethylene oxide) nanofibrous scaffolds for peripheral nerve regeneration. Rajabi M; Firouzi M; Hassannejad Z; Haririan I; Zahedi P J Biomed Mater Res B Appl Biomater; 2018 May; 106(4):1595-1604. PubMed ID: 28805042 [TBL] [Abstract][Full Text] [Related]
3. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569 [TBL] [Abstract][Full Text] [Related]
10. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Ranjbar-Mohammadi M; Prabhakaran MP; Bahrami SH; Ramakrishna S Carbohydr Polym; 2016 Apr; 140():104-12. PubMed ID: 26876833 [TBL] [Abstract][Full Text] [Related]
11. Neuronally differentiated adipose-derived stem cells and aligned PHBV nanofiber nerve scaffolds promote sciatic nerve regeneration. Hu F; Zhang X; Liu H; Xu P; Doulathunnisa ; Teng G; Xiao Z Biochem Biophys Res Commun; 2017 Jul; 489(2):171-178. PubMed ID: 28549587 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474 [TBL] [Abstract][Full Text] [Related]
13. Chitosan-cross-linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge. Biazar E; Keshel SH ASAIO J; 2013; 59(6):651-9. PubMed ID: 24172271 [TBL] [Abstract][Full Text] [Related]
14. NECL1 coated PLGA as favorable conduits for repair of injured peripheral nerve. Xu F; Zhang K; Lv P; Lu R; Zheng L; Zhao J Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1132-1140. PubMed ID: 27772714 [TBL] [Abstract][Full Text] [Related]
15. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus. Kuppan P; Sethuraman S; Krishnan UM J Biomater Sci Polym Ed; 2014; 25(6):574-93. PubMed ID: 24502395 [TBL] [Abstract][Full Text] [Related]
16. Development of chitosan-crosslinked nanofibrous PHBV guide for repair of nerve defects. Biazar E; Heidari Keshel S Artif Cells Nanomed Biotechnol; 2014 Dec; 42(6):385-91. PubMed ID: 24040773 [TBL] [Abstract][Full Text] [Related]
17. Polymeric nanofibrous nerve conduits coupled with laminin for peripheral nerve regeneration. Chang W; Shah MB; Zhou G; Walsh K; Rudraiah S; Kumbar SG; Yu X Biomed Mater; 2020 Mar; 15(3):035003. PubMed ID: 31918424 [TBL] [Abstract][Full Text] [Related]
18. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration. Veleirinho B; Coelho DS; Dias PF; Maraschin M; Ribeiro-do-Valle RM; Lopes-da-Silva JA Int J Biol Macromol; 2012 Nov; 51(4):343-50. PubMed ID: 22652216 [TBL] [Abstract][Full Text] [Related]
20. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]