These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 27865091)

  • 1. Analysis of voluntary opening Ottobock Hook and Hosmer Hook for upper limb prosthetics: a preliminary study.
    Hashim NA; Abd Razak NAB; Gholizadeh H; Osman NAA
    Biomed Tech (Berl); 2017 Aug; 62(4):447-454. PubMed ID: 27865091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of voluntary opening hand and hook prosthetic devices: 24 years of development?
    Smit G; Bongers RM; Van der Sluis CK; Plettenburg DH
    J Rehabil Res Dev; 2012; 49(4):523-34. PubMed ID: 22773256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.
    Haverkate L; Smit G; Plettenburg DH
    Prosthet Orthot Int; 2016 Feb; 40(1):109-16. PubMed ID: 25336050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of voluntary closing hand and hook prostheses.
    Smit G; Plettenburg DH
    Prosthet Orthot Int; 2010 Dec; 34(4):411-27. PubMed ID: 20849359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Cable Forces Deteriorate Pinch Force Control in Voluntary-Closing Body-Powered Prostheses.
    Hichert M; Abbink DA; Kyberd PJ; Plettenburg DH
    PLoS One; 2017; 12(1):e0169996. PubMed ID: 28099454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grasp and force based taxonomy of split-hook prosthetic terminal devices.
    Belter JT; Reynolds BC; Dollar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6613-8. PubMed ID: 25571512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is body powered operation of upper limb prostheses feasible for young limb deficient children?
    Shaperman J; Leblanc M; Setoguchi Y; McNeal DR
    Prosthet Orthot Int; 1995 Dec; 19(3):165-75. PubMed ID: 8927528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and evaluation of voluntary opening and voluntary closing prosthetic terminal device.
    Sensinger JW; Lipsey J; Thomas A; Turner K
    J Rehabil Res Dev; 2015; 52(1):63-75. PubMed ID: 26186081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The design and development of a gloveless endoskeletal prosthetic hand.
    Doshi R; Yeh C; LeBlanc M
    J Rehabil Res Dev; 1998 Oct; 35(4):388-95. PubMed ID: 10220216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of a passive capstan based grasp enhancement feature in a voluntary-closing prosthetic terminal device.
    Gemmell KD; Leddy MT; Belter JT; Dollar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5019-5025. PubMed ID: 28269396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental apparatus to simulate body-powered prosthetic usage: Development and preliminary evaluation.
    Gao F; Rodriguez J; Kapp S
    Prosthet Orthot Int; 2016 Jun; 40(3):404-8. PubMed ID: 25820641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossed four-bar mechanism for improved prosthetic grasp.
    Ramirez IA; Lusk CP; Dubey R; Highsmith MJ; Maitland ME
    J Rehabil Res Dev; 2009; 46(8):1011-20. PubMed ID: 20157858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary assessment of three new designs of prosthetic prehensors for upper limb amputees.
    Meeks D; LeBlanc M
    Prosthet Orthot Int; 1988 Apr; 12(1):41-5. PubMed ID: 3399368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue-free operation of most body-powered prostheses not feasible for majority of users with trans-radial deficiency.
    Hichert M; Vardy AN; Plettenburg D
    Prosthet Orthot Int; 2018 Feb; 42(1):84-92. PubMed ID: 28621577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?
    Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion pattern analysis for evaluation and design of a prosthetic hook.
    Gilad I
    Arch Phys Med Rehabil; 1985 Jun; 66(6):399-402. PubMed ID: 4004541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The design of a modular voluntary opening prosthetic hand: ongoing research and preliminary results.
    El-Sheikh MA; Taher MF
    Int J Artif Organs; 2016 Jul; 39(5):235-41. PubMed ID: 27199136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Inter-Training Intervals on Intermanual Transfer Effects in Upper-Limb Prosthesis Training: A Randomized Pre-Posttest Study.
    Romkema S; Bongers RM; van der Sluis CK
    PLoS One; 2015; 10(6):e0128747. PubMed ID: 26075396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Successful voluntary grasp and release using the cookie crusher myoelectric hand in 2-year-olds.
    Meredith JM; Uellendahl JE; Keagy RD
    Am J Occup Ther; 1993 Sep; 47(9):825-9. PubMed ID: 8116774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.