These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
427 related articles for article (PubMed ID: 27865487)
1. Prediction and validation of residual feed intake and dry matter intake in Danish lactating dairy cows using mid-infrared spectroscopy of milk. Shetty N; Løvendahl P; Lund MS; Buitenhuis AJ J Dairy Sci; 2017 Jan; 100(1):253-264. PubMed ID: 27865487 [TBL] [Abstract][Full Text] [Related]
2. Predicting methane emissions of lactating Danish Holstein cows using Fourier transform mid-infrared spectroscopy of milk. Shetty N; Difford G; Lassen J; Løvendahl P; Buitenhuis AJ J Dairy Sci; 2017 Nov; 100(11):9052-9060. PubMed ID: 28918149 [TBL] [Abstract][Full Text] [Related]
3. Milk mid-infrared spectral data as a tool to predict feed intake in lactating Norwegian Red dairy cows. Wallén SE; Prestløkken E; Meuwissen THE; McParland S; Berry DP J Dairy Sci; 2018 Jul; 101(7):6232-6243. PubMed ID: 29605317 [TBL] [Abstract][Full Text] [Related]
4. Mining data from milk infrared spectroscopy to improve feed intake predictions in lactating dairy cows. Dórea JRR; Rosa GJM; Weld KA; Armentano LE J Dairy Sci; 2018 Jul; 101(7):5878-5889. PubMed ID: 29680644 [TBL] [Abstract][Full Text] [Related]
5. Predicting dry matter intake in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. Shadpour S; Chud TCS; Hailemariam D; Oliveira HR; Plastow G; Stothard P; Lassen J; Baldwin R; Miglior F; Baes CF; Tulpan D; Schenkel FS J Dairy Sci; 2022 Oct; 105(10):8257-8271. PubMed ID: 36055837 [TBL] [Abstract][Full Text] [Related]
6. Fourier transform infrared spectroscopy of milk samples as a tool to estimate energy balance, energy- and dry matter intake in lactating dairy cows. Rachah A; Reksen O; Afseth NK; Tafintseva V; Ferneborg S; Martin AD; Kohler A; Prestløkken E J Dairy Res; 2020 Nov; 87(4):436-443. PubMed ID: 33256860 [TBL] [Abstract][Full Text] [Related]
7. Correlations of feed intake predicted with milk infrared spectra and breeding values in the Dutch Holstein population. Ouweltjes W; Veerkamp R; van Burgsteden G; van der Linde R; de Jong G; van Knegsel A; de Haas Y J Dairy Sci; 2022 Jun; 105(6):5271-5282. PubMed ID: 35379463 [TBL] [Abstract][Full Text] [Related]
8. Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows. McParland S; Lewis E; Kennedy E; Moore SG; McCarthy B; O'Donovan M; Butler ST; Pryce JE; Berry DP J Dairy Sci; 2014 Sep; 97(9):5863-71. PubMed ID: 24997658 [TBL] [Abstract][Full Text] [Related]
9. Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis. Lahart B; McParland S; Kennedy E; Boland TM; Condon T; Williams M; Galvin N; McCarthy B; Buckley F J Dairy Sci; 2019 Oct; 102(10):8907-8918. PubMed ID: 31351717 [TBL] [Abstract][Full Text] [Related]
10. Neglect of lactation stage leads to naive assessment of residual feed intake in dairy cattle. Li B; Berglund B; Fikse WF; Lassen J; Lidauer MH; Mäntysaari P; Løvendahl P J Dairy Sci; 2017 Nov; 100(11):9076-9084. PubMed ID: 28888604 [TBL] [Abstract][Full Text] [Related]
11. Prediction of dry matter intake and gross feed efficiency using milk production and live weight in first-parity Holstein cows. Madilindi MA; Banga CB; Zishiri OT Trop Anim Health Prod; 2022 Sep; 54(5):278. PubMed ID: 36074215 [TBL] [Abstract][Full Text] [Related]
12. Comparison of methods to predict feed intake and residual feed intake using behavioral and metabolite data in addition to classical performance variables. Martin MJ; Dórea JRR; Borchers MR; Wallace RL; Bertics SJ; DeNise SK; Weigel KA; White HM J Dairy Sci; 2021 Aug; 104(8):8765-8782. PubMed ID: 33896643 [TBL] [Abstract][Full Text] [Related]
13. Genetic parameters across lactation for feed intake, fat- and protein-corrected milk, and liveweight in first-parity Holstein cattle. Manzanilla Pech CI; Veerkamp RF; Calus MP; Zom R; van Knegsel A; Pryce JE; De Haas Y J Dairy Sci; 2014 Sep; 97(9):5851-62. PubMed ID: 25022692 [TBL] [Abstract][Full Text] [Related]
14. Predicting enteric methane emission of dairy cows with milk Fourier-transform infrared spectra and gas chromatography-based milk fatty acid profiles. van Gastelen S; Mollenhorst H; Antunes-Fernandes EC; Hettinga KA; van Burgsteden GG; Dijkstra J; Rademaker JLW J Dairy Sci; 2018 Jun; 101(6):5582-5598. PubMed ID: 29550122 [TBL] [Abstract][Full Text] [Related]
15. The genetic and biological basis of feed efficiency in mid-lactation Holstein dairy cows. Hardie LC; VandeHaar MJ; Tempelman RJ; Weigel KA; Armentano LE; Wiggans GR; Veerkamp RF; de Haas Y; Coffey MP; Connor EE; Hanigan MD; Staples C; Wang Z; Dekkers JCM; Spurlock DM J Dairy Sci; 2017 Nov; 100(11):9061-9075. PubMed ID: 28843688 [TBL] [Abstract][Full Text] [Related]
16. Feeding behavior parameters and temporal patterns in mid-lactation Holstein cows across a range of residual feed intake values. Brown WE; Cavani L; Peñagaricano F; Weigel KA; White HM J Dairy Sci; 2022 Oct; 105(10):8130-8142. PubMed ID: 36055853 [TBL] [Abstract][Full Text] [Related]
17. Updating predictions of dry matter intake of lactating dairy cows. de Souza RA; Tempelman RJ; Allen MS; VandeHaar MJ J Dairy Sci; 2019 Sep; 102(9):7948-7960. PubMed ID: 31326181 [TBL] [Abstract][Full Text] [Related]
18. Predicting dry matter intake in mid-lactation Holstein cows using point-in-time data streams available on dairy farms. Brown WE; Caputo MJ; Siberski C; Koltes JE; Peñagaricano F; Weigel KA; White HM J Dairy Sci; 2022 Nov; 105(12):9666-9681. PubMed ID: 36241434 [TBL] [Abstract][Full Text] [Related]
19. Assessing different cross-validation schemes for predicting novel traits using sensor data: An application to dry matter intake and residual feed intake using milk spectral data. Yilmaz Adkinson A; Abouhawwash M; VandeHaar MJ; Parker Gaddis KL; Burchard J; Peñagaricano F; White HM; Weigel KA; Baldwin R; Santos JEP; Koltes JE; Tempelman RJ J Dairy Sci; 2024 Oct; 107(10):8084-8099. PubMed ID: 38876215 [TBL] [Abstract][Full Text] [Related]
20. Reliability of breeding values for feed intake and feed efficiency traits in dairy cattle: When dry matter intake recordings are sparse under different scenarios. Negussie E; Mehtiö T; Mäntysaari P; Løvendahl P; Mäntysaari EA; Lidauer MH J Dairy Sci; 2019 Aug; 102(8):7248-7262. PubMed ID: 31155258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]