These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2786551)

  • 1. Divalent ion trapping inside potassium channels of human T lymphocytes.
    Grissmer S; Cahalan MD
    J Gen Physiol; 1989 Apr; 93(4):609-30. PubMed ID: 2786551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology.
    Grissmer S; Nguyen AN; Cahalan MD
    J Gen Physiol; 1993 Oct; 102(4):601-30. PubMed ID: 7505804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of ion permeation pathway in the N-type Ca2+ channel.
    Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y
    J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of the K+ lock-In and the Ba2+ binding sites in a voltage-gated calcium-modulated channel. Implications for survival of K+ permeability.
    Vergara C; Alvarez O; Latorre R
    J Gen Physiol; 1999 Sep; 114(3):365-76. PubMed ID: 10469727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of apamin-sensitive Ca(2+)-activated potassium channels in human leukaemic T lymphocytes.
    Hanselmann C; Grissmer S
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):627-37. PubMed ID: 8930831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divalent cation block and competition between divalent and monovalent cations in the large-conductance K+ channel from Chara australis.
    Laver DR
    J Gen Physiol; 1992 Aug; 100(2):269-300. PubMed ID: 1402783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An energy-barrier model for the permeation of monovalent and divalent cations through the maxi cation channel in the plasma membrane of rye roots.
    White PJ; Ridout MS
    J Membr Biol; 1999 Mar; 168(1):63-75. PubMed ID: 10051690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divalent cation modulation of a-type potassium channels in acutely dissociated central neurons from wide-type and mutant Drosophila.
    Xu TX; Gong N; Xu TL
    J Neurogenet; 2005; 19(2):87-107. PubMed ID: 16024441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-irreversible subconductance gating associated with Ba2+ block of large conductance Ca2+-activated K+ channels.
    Bello RA; Magleby KL
    J Gen Physiol; 1998 Feb; 111(2):343-62. PubMed ID: 9450947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel barium-sensitive calcium influx into rat astrocytes at low external potassium.
    Dallwig R; Vitten H; Deitmer JW
    Cell Calcium; 2000 Oct; 28(4):247-59. PubMed ID: 11032780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Block of squid axon K channels by internally and externally applied barium ions.
    Armstrong CM; Swenson RP; Taylor SR
    J Gen Physiol; 1982 Nov; 80(5):663-82. PubMed ID: 6294220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of divalent cations on the activation of a calcium-dependent potassium channel in hippocampal neurons.
    McLarnon JG; Sawyer D
    Pflugers Arch; 1993 Jun; 424(1):1-8. PubMed ID: 8351203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activity of a transient potassium current in retinal glial (Müller) cells depends on extracellular calcium.
    Bringmann A; Schopf S; Faude F; Skatchkov SN; Enzmann V; Reichenbach A
    J Hirnforsch; 1999; 39(4):539-50. PubMed ID: 10841453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in outward K(+) currents on removal of external Ca(2+) in human atrial myocytes.
    Bertaso F; Hendry BM; Donohoe P; James AF
    Biochem Biophys Res Commun; 2000 Jun; 273(1):10-6. PubMed ID: 10873555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
    Owen JM; Quinn CC; Leach R; Findlay JB; Boyett MR
    Exp Physiol; 1999 May; 84(3):471-88. PubMed ID: 10362846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-dependent regulation of potassium permeability in the glial perineurium (blood-brain barrier) of the crayfish.
    Butt AM; Hargittai PT; Lieberman EM
    Neuroscience; 1990; 38(1):175-85. PubMed ID: 2255394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inwardly rectifying current-voltage relationship of small-conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade.
    Soh H; Park CS
    Biophys J; 2001 May; 80(5):2207-15. PubMed ID: 11325723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-conductance Ca2+-activated potassium channels in secretory neurons.
    Lara J; Acevedo JJ; Onetti CG
    J Neurophysiol; 1999 Sep; 82(3):1317-25. PubMed ID: 10482751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relief of Na+ block of Ca2+-activated K+ channels by external cations.
    Yellen G
    J Gen Physiol; 1984 Aug; 84(2):187-99. PubMed ID: 6092515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeant ion effects on the gating kinetics of the type L potassium channel in mouse lymphocytes.
    Shapiro MS; DeCoursey TE
    J Gen Physiol; 1991 Jun; 97(6):1251-78. PubMed ID: 1875189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.