These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 27865982)

  • 21. Kinetic Methods for Studying DNA Glycosylases Functioning in Base Excision Repair.
    Coey CT; Drohat AC
    Methods Enzymol; 2017; 592():357-376. PubMed ID: 28668127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcription coupled base excision repair in mammalian cells: So little is known and so much to uncover.
    Chakraborty A; Tapryal N; Islam A; Mitra S; Hazra T
    DNA Repair (Amst); 2021 Nov; 107():103204. PubMed ID: 34390916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crosstalk of DNA glycosylases with pathways other than base excision repair.
    Kovtun IV; McMurray CT
    DNA Repair (Amst); 2007 Apr; 6(4):517-29. PubMed ID: 17129768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA repair mechanisms for the recognition and removal of damaged DNA bases.
    Mol CD; Parikh SS; Putnam CD; Lo TP; Tainer JA
    Annu Rev Biophys Biomol Struct; 1999; 28():101-28. PubMed ID: 10410797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases.
    Shi R; Shen XX; Rokas A; Eichman BF
    Bioessays; 2018 Nov; 40(11):e1800133. PubMed ID: 30264543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent progress in the biology, chemistry and structural biology of DNA glycosylases.
    Schärer OD; Jiricny J
    Bioessays; 2001 Mar; 23(3):270-81. PubMed ID: 11223884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic opening of DNA during the enzymatic search for a damaged base.
    Cao C; Jiang YL; Stivers JT; Song F
    Nat Struct Mol Biol; 2004 Dec; 11(12):1230-6. PubMed ID: 15558051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative Effects of Ions, Molecular Crowding, and Bulk DNA on the Damage Search Mechanisms of hOGG1 and hUNG.
    Cravens SL; Stivers JT
    Biochemistry; 2016 Sep; 55(37):5230-42. PubMed ID: 27571472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA repair in mammalian cells: Base excision repair: the long and short of it.
    Robertson AB; Klungland A; Rognes T; Leiros I
    Cell Mol Life Sci; 2009 Mar; 66(6):981-93. PubMed ID: 19153658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of oxidatively generated DNA damage by overlapping repair pathways.
    Shafirovich V; Geacintov NE
    Free Radic Biol Med; 2017 Jun; 107():53-61. PubMed ID: 27818219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential Ability of Five DNA Glycosylases to Recognize and Repair Damage on Nucleosomal DNA.
    Olmon ED; Delaney S
    ACS Chem Biol; 2017 Mar; 12(3):692-701. PubMed ID: 28085251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells.
    Hegde ML; Hazra TK; Mitra S
    Cell Res; 2008 Jan; 18(1):27-47. PubMed ID: 18166975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair.
    Hitomi K; Iwai S; Tainer JA
    DNA Repair (Amst); 2007 Apr; 6(4):410-28. PubMed ID: 17208522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Major oxidative products of cytosine are substrates for the nucleotide incision repair pathway.
    Daviet S; Couvé-Privat S; Gros L; Shinozuka K; Ide H; Saparbaev M; Ishchenko AA
    DNA Repair (Amst); 2007 Jan; 6(1):8-18. PubMed ID: 16978929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA repair enzymes.
    Evans TC; Nichols NM
    Curr Protoc Mol Biol; 2008 Oct; Chapter 3():Unit3.9. PubMed ID: 18972391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress.
    Akbari M; Otterlei M; Peña-Diaz J; Krokan HE
    Neuroscience; 2007 Apr; 145(4):1201-12. PubMed ID: 17101234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Base Excision Repair in the Mitochondria.
    Prakash A; Doublié S
    J Cell Biochem; 2015 Aug; 116(8):1490-9. PubMed ID: 25754732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The discovery of a new family of mammalian enzymes for repair of oxidatively damaged DNA, and its physiological implications.
    Hazra TK; Izumi T; Kow YW; Mitra S
    Carcinogenesis; 2003 Feb; 24(2):155-7. PubMed ID: 12584162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2.
    Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD
    DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-flipping DNA glycosylase AlkD scans DNA without formation of a stable interrogation complex.
    Ahmadi A; Till K; Backe PH; Blicher P; Diekmann R; Schüttpelz M; Glette K; Tørresen J; Bjørås M; Rowe AD; Dalhus B
    Commun Biol; 2021 Jul; 4(1):876. PubMed ID: 34267321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.