BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27866103)

  • 1. Enhanced MFC power production and struvite recovery by the addition of sea salts to urine.
    Merino-Jimenez I; Celorrio V; Fermin DJ; Greenman J; Ieropoulos I
    Water Res; 2017 Feb; 109():46-53. PubMed ID: 27866103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources.
    Liu B; Giannis A; Zhang J; Chang VW; Wang JY
    Chemosphere; 2013 Nov; 93(11):2738-47. PubMed ID: 24134888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient removal and energy production in a urine treatment process using magnesium ammonium phosphate precipitation and a microbial fuel cell technique.
    Zang GL; Sheng GP; Li WW; Tong ZH; Zeng RJ; Shi C; Yu HQ
    Phys Chem Chem Phys; 2012 Feb; 14(6):1978-84. PubMed ID: 22234416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electricity and catholyte production from ceramic MFCs treating urine.
    Merino Jimenez I; Greenman J; Ieropoulos I
    Int J Hydrogen Energy; 2017 Jan; 42(3):1791-1799. PubMed ID: 28280287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus recovery from urine with different magnesium resources in an air-agitated reactor.
    Liu X; Hu Z; Mu J; Zang H; Liu L
    Environ Technol; 2014; 35(21-24):2781-7. PubMed ID: 25176481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of microbial fuel cell operation time on the disinfection efficacy of electrochemically synthesised catholyte from urine.
    Merino-Jimenez I; Obata O; Pasternak G; Gajda I; Greenman J; Ieropoulos I
    Process Biochem; 2021 Feb; 101():294-303. PubMed ID: 33664628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate and potassium recovery from source separated urine through struvite precipitation.
    Wilsenach JA; Schuurbiers CA; van Loosdrecht MC
    Water Res; 2007 Jan; 41(2):458-66. PubMed ID: 17126877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modelling approach to prepare synthetic urine for struvite precipitation studies.
    Soltani S; Natividad-Marin L; Schneider PA
    Water Sci Technol; 2023 Jun; 87(11):2622-2633. PubMed ID: 37318915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization.
    Shaddel S; Grini T; Andreassen JP; Østerhus SW; Ucar S
    Chemosphere; 2020 Oct; 256():126968. PubMed ID: 32428738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient recovery and microbial diversity in human urine fed microbial fuel cell.
    Sharma P; Mutnuri S
    Water Sci Technol; 2019 Feb; 79(4):718-730. PubMed ID: 30975938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial fuel cell treatment energy-offset for fertilizer production from human urine.
    Sabin JM; Leverenz H; Bischel HN
    Chemosphere; 2022 May; 294():133594. PubMed ID: 35031247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient removal and recovery from wastewater by microbial fuel cell-based systems - A review.
    Baby MG; Ahammed MM
    Water Sci Technol; 2022 Jul; 86(1):29-55. PubMed ID: 35838281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents.
    Siciliano A; De Rosa S
    Environ Technol; 2014; 35(5-8):841-50. PubMed ID: 24645466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of NH3-N and P refixation by struvite formation in hybrid anaerobic reactor.
    Lee JJ; Choi CU; Lee MJ; Chung IH; Kim DS
    Water Sci Technol; 2004; 49(5-6):207-14. PubMed ID: 15137425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wood ash as a magnesium source for phosphorus recovery from source-separated urine.
    Sakthivel SR; Tilley E; Udert KM
    Sci Total Environ; 2012 Mar; 419():68-75. PubMed ID: 22297249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory studies on recovery of N and P from human urine through struvite crystallisation and zeolite adsorption.
    Bán Z; Dave G
    Environ Technol; 2004 Jan; 25(1):111-21. PubMed ID: 15027655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of ceramic MFC stacks for urine energy extraction.
    Tremouli A; Greenman J; Ieropoulos I
    Bioelectrochemistry; 2018 Oct; 123():19-25. PubMed ID: 29719273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of struvite from stored human urine.
    Tilley E; Atwater J; Mavinic D
    Environ Technol; 2008 Jul; 29(7):797-806. PubMed ID: 18697521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater.
    Crutchik D; Garrido JM
    Water Sci Technol; 2011; 64(12):2460-7. PubMed ID: 22170842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation.
    Merino-Jimenez I; Gonzalez-Juarez F; Greenman J; Ieropoulos I
    J Power Sources; 2019 Jul; 429():30-37. PubMed ID: 31379405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.