These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 27866233)
1. A Treatise to Computational Approaches Towards Prediction of Membrane Protein and Its Subtypes. Butt AH; Rasool N; Khan YD J Membr Biol; 2017 Feb; 250(1):55-76. PubMed ID: 27866233 [TBL] [Abstract][Full Text] [Related]
2. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. Hayat M; Khan A J Theor Biol; 2011 Feb; 271(1):10-7. PubMed ID: 21110985 [TBL] [Abstract][Full Text] [Related]
3. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121 [TBL] [Abstract][Full Text] [Related]
4. Identifying GPCRs and their types with Chou's pseudo amino acid composition: an approach from multi-scale energy representation and position specific scoring matrix. Zia-Ur-Rehman ; Khan A Protein Pept Lett; 2012 Aug; 19(8):890-903. PubMed ID: 22316312 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition. Ahmad K; Waris M; Hayat M J Membr Biol; 2016 Jun; 249(3):293-304. PubMed ID: 26746980 [TBL] [Abstract][Full Text] [Related]
6. Predicting membrane proteins and their types by extracting various sequence features into Chou's general PseAAC. Butt AH; Rasool N; Khan YD Mol Biol Rep; 2018 Dec; 45(6):2295-2306. PubMed ID: 30238411 [TBL] [Abstract][Full Text] [Related]
7. Efficient utilization on PSSM combining with recurrent neural network for membrane protein types prediction. Wang S; Li M; Guo L; Cao Z; Fei Y Comput Biol Chem; 2019 Aug; 81():9-15. PubMed ID: 31472418 [TBL] [Abstract][Full Text] [Related]
8. Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou's pseudo amino acid composition. Chen YK; Li KB J Theor Biol; 2013 Feb; 318():1-12. PubMed ID: 23137835 [TBL] [Abstract][Full Text] [Related]
9. Classification of membrane protein types using Voting Feature Interval in combination with Chou's Pseudo Amino Acid Composition. Ali F; Hayat M J Theor Biol; 2015 Nov; 384():78-83. PubMed ID: 26297889 [TBL] [Abstract][Full Text] [Related]
10. Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition. Wang M; Yang J; Liu GP; Xu ZJ; Chou KC Protein Eng Des Sel; 2004 Jun; 17(6):509-16. PubMed ID: 15314209 [TBL] [Abstract][Full Text] [Related]
11. MOWGLI: prediction of protein-MannOse interacting residues With ensemble classifiers usinG evoLutionary Information. Pai PP; Mondal S J Biomol Struct Dyn; 2016 Oct; 34(10):2069-83. PubMed ID: 26457920 [TBL] [Abstract][Full Text] [Related]
12. Prediction of membrane protein types by exploring local discriminative information from evolutionary profiles. Kabir M; Arif M; Ali F; Ahmad S; Swati ZNK; Yu DJ Anal Biochem; 2019 Jan; 564-565():123-132. PubMed ID: 30393088 [TBL] [Abstract][Full Text] [Related]
13. Mem-PHybrid: hybrid features-based prediction system for classifying membrane protein types. Hayat M; Khan A Anal Biochem; 2012 May; 424(1):35-44. PubMed ID: 22342883 [TBL] [Abstract][Full Text] [Related]
14. Amino acid interaction preferences in helical membrane proteins. Jha AN; Vishveshwara S; Banavar JR Protein Eng Des Sel; 2011 Aug; 24(8):579-88. PubMed ID: 21666247 [TBL] [Abstract][Full Text] [Related]
15. Prediction of ATP-binding sites in membrane proteins using a two-dimensional convolutional neural network. Nguyen TT; Le NQ; Kusuma RMI; Ou YY J Mol Graph Model; 2019 Nov; 92():86-93. PubMed ID: 31344547 [TBL] [Abstract][Full Text] [Related]
16. Prediction of phosphorylation sites based on the integration of multiple classifiers. Han RZ; Wang D; Chen YH; Dong LK; Fan YL Genet Mol Res; 2017 Feb; 16(1):. PubMed ID: 28252167 [TBL] [Abstract][Full Text] [Related]
17. Prediction of subcellular localization of eukaryotic proteins using position-specific profiles and neural network with weighted inputs. Zou L; Wang Z; Huang J J Genet Genomics; 2007 Dec; 34(12):1080-7. PubMed ID: 18155620 [TBL] [Abstract][Full Text] [Related]
18. Prediction of membrane proteins using split amino acid and ensemble classification. Hayat M; Khan A; Yeasin M Amino Acids; 2012 Jun; 42(6):2447-60. PubMed ID: 21850437 [TBL] [Abstract][Full Text] [Related]
19. Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix. Chandra A; Sharma A; Dehzangi A; Shigemizu D; Tsunoda T BMC Mol Cell Biol; 2019 Dec; 20(Suppl 2):57. PubMed ID: 31856704 [TBL] [Abstract][Full Text] [Related]
20. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition. He X; Han K; Hu J; Yan H; Yang JY; Shen HB; Yu DJ J Membr Biol; 2015 Dec; 248(6):1005-14. PubMed ID: 26058944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]