BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27866687)

  • 1. Glibenclamide Nanocrystals in a Biodegradable Chitosan Patch for Transdermal Delivery: Engineering, Formulation, and Evaluation.
    Ali HSM; Hanafy AF
    J Pharm Sci; 2017 Jan; 106(1):402-410. PubMed ID: 27866687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glibenclamide transdermal patches: physicochemical, pharmacodynamic, and pharmacokinetic evaluations.
    Mutalik S; Udupa N
    J Pharm Sci; 2004 Jun; 93(6):1577-94. PubMed ID: 15124215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of self-nanoemulsifying systems for the enhancement of in vivo hypoglycemic efficacy of glimepiride transdermal patches.
    Ahmed OA; Afouna MI; El-Say KM; Abdel-Naim AB; Khedr A; Banjar ZM
    Expert Opin Drug Deliv; 2014 Jul; 11(7):1005-13. PubMed ID: 24702435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of solidified glyburide nanocrystals for tablet formulation via loading of carriers: downstream processing, characterization, and bioavailability.
    Ali HSM; Hanafy AF; Alqurshi A
    Int J Nanomedicine; 2019; 14():1893-1906. PubMed ID: 30936692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of alginate-reinforced chitosan nanoparticles utilizing W/O nanoemulsification/internal crosslinking technique for transdermal delivery of rabeprazole.
    Ahmed TA; El-Say KM
    Life Sci; 2014 Aug; 110(1):35-43. PubMed ID: 24997393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of antihistaminic transdermal films based on alginate-chitosan polyelectrolyte complexes: characterization and permeation studies.
    Lefnaoui S; Moulai-Mostefa N; Yahoum MM; Gasmi SN
    Drug Dev Ind Pharm; 2018 Mar; 44(3):432-443. PubMed ID: 29098871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of chitosan films for transdermal delivery of glimepiride.
    Ammar HO; Salama HA; El-Nahhas SA; Elmotasem H
    Curr Drug Deliv; 2008 Oct; 5(4):290-8. PubMed ID: 18855598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transdermal delivery of glibenclamide and glipizide: in vitro permeation studies through mouse skin.
    Mutalik S; Udupa N
    Pharmazie; 2002 Dec; 57(12):838-41. PubMed ID: 12561248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcapsules and transdermal patch: a comparative approach for improved delivery of antidiabetic drug.
    Mishra MK; Ray D; Barik BB
    AAPS PharmSciTech; 2009; 10(3):928-34. PubMed ID: 19629706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of lecithin stabilized glibenclamide nanocrystals for enhanced solubility and drug delivery.
    Kumar BS; Saraswathi R; Kumar KV; Jha SK; Venkates DP; Dhanaraj SA
    Drug Deliv; 2014 May; 21(3):173-84. PubMed ID: 24102185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation.
    Ahmed TA; El-Say KM; Aljaeid BM; Fahmy UA; Abd-Allah FI
    Int J Pharm; 2016 Mar; 500(1-2):245-54. PubMed ID: 26775063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glibenclamide-loaded self-nanoemulsifying drug delivery system: development and characterization.
    Singh SK; Verma PR; Razdan B
    Drug Dev Ind Pharm; 2010 Aug; 36(8):933-45. PubMed ID: 20184416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cyclodextrins and chitosan, separately or in combination, on glyburide solubility and permeability.
    Zerrouk N; Corti G; Ancillotti S; Maestrelli F; Cirri M; Mura P
    Eur J Pharm Biopharm; 2006 Apr; 62(3):241-6. PubMed ID: 16226882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological evaluation of membrane-moderated transdermal system of glipizide.
    Mutalik S; Udupa N
    Clin Exp Pharmacol Physiol; 2006; 33(1-2):17-26. PubMed ID: 16445694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment.
    Kamran M; Ahad A; Aqil M; Imam SS; Sultana Y; Ali A
    Int J Pharm; 2016 May; 505(1-2):147-58. PubMed ID: 27005906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation development, in vitro and in vivo evaluation of membrane controlled transdermal systems of glibenclamide.
    Mutalik S; Udupa N
    J Pharm Pharm Sci; 2005 Jan; 8(1):26-38. PubMed ID: 15946595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of gliclazide ionic liquid and the transdermal patches: An effective and noninvasive sustained release formulation to achieve hypoglycemic effects.
    Zhou B; Liu S; Yin H; Qi M; Hong M; Ren GB
    Eur J Pharm Sci; 2021 Sep; 164():105915. PubMed ID: 34146681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured lipid carriers of pioglitazone for transdermal application: from experimental design to bioactivity detail.
    Alam S; Aslam M; Khan A; Imam SS; Aqil M; Sultana Y; Ali A
    Drug Deliv; 2016; 23(2):601-9. PubMed ID: 24937378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, in-vitro and in-vivo characterization of transdermal patch containing glibenclamide and atenolol: a combinational approach.
    Anitha P; Ramkanth S; Saleem MT; Umasankari K; Reddy BP; Chetty M
    Pak J Pharm Sci; 2011 Apr; 24(2):155-63. PubMed ID: 21454164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.