BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27866760)

  • 1. Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water.
    Santos OS; Coelho da Silva M; Silva VR; Mussel WN; Yoshida MI
    J Hazard Mater; 2017 Feb; 324(Pt B):406-413. PubMed ID: 27866760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam.
    Keshavarz A; Zilouei H; Abdolmaleki A; Asadinezhad A
    J Environ Manage; 2015 Jul; 157():279-86. PubMed ID: 25917559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of bio-based rigid polyurethane foams synthesized with lignin and castor oil.
    Kim HJ; Jin X; Choi JW
    Sci Rep; 2024 Jun; 14(1):13490. PubMed ID: 38866939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic lignin-based multifunctional polyurethane foam with SiO
    Wu J; Ma X; Gnanasekar P; Wang F; Zhu J; Yan N; Chen J
    Sci Total Environ; 2023 Feb; 860():160276. PubMed ID: 36403829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crude oil and S500 diesel removal from seawater by polyurethane composites reinforced with palm fiber residues.
    Martins LS; Zanini NC; Maia LS; Souza AG; Barbosa RFS; Rosa DS; Mulinari DR
    Chemosphere; 2021 Mar; 267():129288. PubMed ID: 33352367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-sorbent from castor oil polyurethane foam containing cellulose-halloysite nanocomposite for removal of manganese, nickel and cobalt ions from water.
    Silva PAP; Oréfice RL
    J Hazard Mater; 2023 Jul; 454():131433. PubMed ID: 37146336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic modification of polyurethane foam for oil spill cleanup.
    Li H; Liu L; Yang F
    Mar Pollut Bull; 2012 Aug; 64(8):1648-53. PubMed ID: 22749062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight on açaí seed biomass economy and waste cooking oil: Eco-sorbent castor oil-based.
    Martins LS; Silva NGS; Claro AM; Amaral NC; Barud HS; Mulinari DR
    J Environ Manage; 2021 Sep; 293():112803. PubMed ID: 34089952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Superhydrophobic/Superoleophilic stearic acid and Polymer-modified magnetic polyurethane for Oil-Water Separation: Effect of polymeric nature.
    Satria M; Saleh TA
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):522-534. PubMed ID: 36174295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of oil recovery using zirconium-chitosan hybrid composite by adsorptive method.
    Elanchezhiyan SS; Sivasurian N; Meenakshi S
    Carbohydr Polym; 2016 Jul; 145():103-13. PubMed ID: 27106157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biobased Castor Oil-Based Polyurethane Foams Grafted with Octadecylsilane-Modified Diatomite for Use as Eco-Friendly and Low-Cost Sorbents for Crude Oil Clean-Up Applications.
    Perera HJ; Goyal A; Alhassan SM; Banu H
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polypropylene/lignin blend monoliths used as sorbent in oil spill cleanup.
    Alassod A; Gibril M; Islam SR; Huang W; Xu G
    Heliyon; 2020 Sep; 6(9):e04591. PubMed ID: 32944663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue.
    Ren L; Tang Z; Du J; Chen L; Qiang T
    J Hazard Mater; 2021 Sep; 417():126130. PubMed ID: 34229397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innovative Sol-gel functionalized polyurethane foam for sustainable water purification and analytical advances.
    Alwael H; Alsulami AN; Abduljabbar TN; Oubaha M; El-Shahawi MS
    Front Chem; 2024; 12():1324426. PubMed ID: 38389725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filler-Modified Castor Oil-Based Polyurethane Foam for the Removal of Aqueous Heavy Metals Detected Using Laser-Induced Breakdown Spectroscopy (LIBS) Technique.
    Iqhrammullah M; Marlina ; Hedwig R; Karnadi I; Kurniawan KH; Olaiya NG; Mohamad Haafiz MK; Abdul Khalil HPS; Abdulmadjid SN
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32294999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of diatomite and hydroxyapatite reinforced porous polyurethane foam biocomposites.
    Mustafov SD; Sen F; Seydibeyoglu MO
    Sci Rep; 2020 Aug; 10(1):13308. PubMed ID: 32764640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions.
    Alessandrello MJ; Juárez Tomás MS; Raimondo EE; Vullo DL; Ferrero MA
    Mar Pollut Bull; 2017 Sep; 122(1-2):156-160. PubMed ID: 28641883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic Polyurethane Foam Coated with Polysiloxane-Modified Clay Nanotubes for Efficient and Recyclable Oil Absorption.
    Wu F; Pickett K; Panchal A; Liu M; Lvov Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25445-25456. PubMed ID: 31260242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superhydrophobic and oleophilic open-cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene.
    Rizvi A; Chu RK; Lee JH; Park CB
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21131-40. PubMed ID: 25437647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith.
    Suksabye P; Thiravetyan P
    J Environ Manage; 2012 Jul; 102():1-8. PubMed ID: 22421026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.