These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 27866813)
1. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. Azambuja P; Garcia ES; Waniek PJ; Vieira CS; Figueiredo MB; Gonzalez MS; Mello CB; Castro DP; Ratcliffe NA J Insect Physiol; 2017; 97():45-65. PubMed ID: 27866813 [TBL] [Abstract][Full Text] [Related]
2. Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population. Vieira CS; Mattos DP; Waniek PJ; Santangelo JM; Figueiredo MB; Gumiel M; da Mota FF; Castro DP; Garcia ES; Azambuja P Parasit Vectors; 2015 Mar; 8():135. PubMed ID: 25888720 [TBL] [Abstract][Full Text] [Related]
3. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus. Peterson JK; Graham AL; Elliott RJ; Dobson AP; Triana Chávez O Parasitology; 2016 Aug; 143(9):1157-67. PubMed ID: 27174360 [TBL] [Abstract][Full Text] [Related]
4. Trypanosoma cruzi and Trypanosoma rangeli: interplay with hemolymph components of Rhodnius prolixus. Mello CB; Garcia ES; Ratcliffe NA; Azambuja P J Invertebr Pathol; 1995 May; 65(3):261-8. PubMed ID: 7745280 [TBL] [Abstract][Full Text] [Related]
5. Triatomine physiology in the context of trypanosome infection. Guarneri AA; Lorenzo MG J Insect Physiol; 2017; 97():66-76. PubMed ID: 27401496 [TBL] [Abstract][Full Text] [Related]
6. Behavioral fever response in Rhodnius prolixus (Reduviidae: Triatominae) to intracoelomic inoculation of Trypanosoma cruzi. Hinestroza G; Ortiz MI; Molina J Rev Soc Bras Med Trop; 2016; 49(4):425-32. PubMed ID: 27598628 [TBL] [Abstract][Full Text] [Related]
7. Azadirachtin interferes with basal immunity and microbial homeostasis in the Rhodnius prolixus midgut. Vieira CS; Figueiredo MB; Moraes CDS; Pereira SB; Dyson P; Mello CB; Castro DP; Azambuja P Dev Comp Immunol; 2021 Jan; 114():103864. PubMed ID: 32918931 [TBL] [Abstract][Full Text] [Related]
8. Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus. Fellet MR; Lorenzo MG; Elliot SL; Carrasco D; Guarneri AA PLoS One; 2014; 9(8):e105255. PubMed ID: 25136800 [TBL] [Abstract][Full Text] [Related]
9. What is the 'true' effect of Trypanosoma rangeli on its triatomine bug vector? Peterson JK; Graham AL J Vector Ecol; 2016 Jun; 41(1):27-33. PubMed ID: 27232121 [TBL] [Abstract][Full Text] [Related]
10. Modulation of IMD, Toll, and Jak/STAT Immune Pathways Genes in the Fat Body of Rolandelli A; Nascimento AEC; Silva LS; Rivera-Pomar R; Guarneri AA Front Cell Infect Microbiol; 2020; 10():598526. PubMed ID: 33537241 [No Abstract] [Full Text] [Related]
11. Lipoproteins from vertebrate host blood plasma are involved in Trypanosoma cruzi epimastigote agglutination and participate in interaction with the vector insect, Rhodnius prolixus. Moreira CJC; De Cicco NNT; Galdino TS; Feder D; Gonzalez MS; Miguel RB; Coura JR; Castro HC; Azambuja P; Atella GC; Ratcliffe NA; Mello CB Exp Parasitol; 2018 Dec; 195():24-33. PubMed ID: 30261188 [TBL] [Abstract][Full Text] [Related]
12. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Vieira CS; Waniek PJ; Castro DP; Mattos DP; Moreira OC; Azambuja P Parasit Vectors; 2016 Mar; 9():119. PubMed ID: 26931761 [TBL] [Abstract][Full Text] [Related]
13. Immune signaling pathways in Pereira SB; de Mattos DP; Gonzalez MS; Mello CB; Azambuja P; de Castro DP; Vieira CS Front Physiol; 2024; 15():1435447. PubMed ID: 39210973 [TBL] [Abstract][Full Text] [Related]
14. Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus. Azambuja P; Ratcliffe NA; Garcia ES An Acad Bras Cienc; 2005 Sep; 77(3):397-404. PubMed ID: 16127548 [TBL] [Abstract][Full Text] [Related]
15. A darker chromatic variation of Rhodnius pallescens infected by specific genetic groups of Trypanosoma rangeli and Trypanosoma cruzi from Panama. Saldaña A; Santamaría AM; Pineda V; Vásquez V; Gottdenker NL; Calzada JE Parasit Vectors; 2018 Jul; 11(1):423. PubMed ID: 30012203 [TBL] [Abstract][Full Text] [Related]
16. Physalin B inhibits Trypanosoma cruzi infection in the gut of Rhodnius prolixus by affecting the immune system and microbiota. Castro DP; Moraes CS; Gonzalez MS; Ribeiro IM; Tomassini TC; Azambuja P; Garcia ES J Insect Physiol; 2012 Dec; 58(12):1620-5. PubMed ID: 23085484 [TBL] [Abstract][Full Text] [Related]
17. Rhodnius prolixus: modulation of antioxidant defenses by Trypanosoma rangeli. Cosentino-Gomes D; Rocco-Machado N; Meyer-Fernandes JR Exp Parasitol; 2014 Oct; 145():118-24. PubMed ID: 25131776 [TBL] [Abstract][Full Text] [Related]
18. Trypanosomes Modify the Behavior of Their Insect Hosts: Effects on Locomotion and on the Expression of a Related Gene. Marliére NP; Latorre-Estivalis JM; Lorenzo MG; Carrasco D; Alves-Silva J; Rodrigues Jde O; Ferreira Lde L; Lara Lde M; Lowenberger C; Guarneri AA PLoS Negl Trop Dis; 2015; 9(8):e0003973. PubMed ID: 26291723 [TBL] [Abstract][Full Text] [Related]
19. The interaction between Trypanosoma rangeli and the nitrophorins in the salivary glands of the triatomine Rhodnius prolixus (Hemiptera; Reduviidae). Paim RM; Pereira MH; Araújo RN; Gontijo NF; Guarneri AA Insect Biochem Mol Biol; 2013 Mar; 43(3):229-36. PubMed ID: 23295786 [TBL] [Abstract][Full Text] [Related]
20. Genotyping of Trypanosoma cruzi DTUs and Trypanosoma rangeli genetic groups in experimentally infected Rhodnius prolixus by PCR-RFLP. Sá AR; Dias GB; Kimoto KY; Steindel M; Grisard EC; Toledo MJ; Gomes ML Acta Trop; 2016 Apr; 156():115-21. PubMed ID: 26792202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]