These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 27866813)
21. The innate immune system of kissing bugs, vectors of chagas disease. Salcedo-Porras N; Lowenberger C Dev Comp Immunol; 2019 Sep; 98():119-128. PubMed ID: 31014953 [TBL] [Abstract][Full Text] [Related]
22. Exposure to Trypanosoma parasites induces changes in the microbiome of the Chagas disease vector Rhodnius prolixus. Eberhard FE; Klimpel S; Guarneri AA; Tobias NJ Microbiome; 2022 Mar; 10(1):45. PubMed ID: 35272716 [TBL] [Abstract][Full Text] [Related]
23. Infecting Triatomines with Trypanosomes. Guarneri AA Methods Mol Biol; 2020; 2116():69-79. PubMed ID: 32221914 [TBL] [Abstract][Full Text] [Related]
24. Marliére NP; Lorenzo MG; Guarneri AA Parasitology; 2022 Feb; 149(2):155-160. PubMed ID: 35234603 [TBL] [Abstract][Full Text] [Related]
25. Flight behavior and performance of Rhodnius pallescens (Hemiptera: Reduviidae) on a tethered flight mill. Castro LA; Peterson JK; Saldana A; Perea MY; Calzada JE; Pineda V; Dobson AP; Gottdenker NL J Med Entomol; 2014 Sep; 51(5):1010-8. PubMed ID: 25276931 [TBL] [Abstract][Full Text] [Related]
26. Parasite-mediated interactions within the insect vector: Trypanosoma rangeli strategies. Garcia ES; Castro DP; Figueiredo MB; Azambuja P Parasit Vectors; 2012 May; 5():105. PubMed ID: 22647620 [TBL] [Abstract][Full Text] [Related]
27. The innate immune response of triatomines against Trypanosoma cruzi and Trypanosoma rangeli with an unresolved question: Do triatomines have immune memory? Carmona-Peña SP; Contreras-Garduño J; Castro DP; Manjarrez J; Vázquez-Chagoyán JC Acta Trop; 2021 Dec; 224():106108. PubMed ID: 34450058 [TBL] [Abstract][Full Text] [Related]
28. The affinity of the lectins Ricinus communis and Glycine maxima to carbohydrates on the cell surface of various forms of Trypanosoma cruzi and Trypanosoma rangeli, and the application of these lectins for the identification of T. cruzi in the feces of Rhodnius prolixus. Marinkelle CJ; Vallejo GA; Schottelius J; Guhl F; de Sanchez N Acta Trop; 1986 Sep; 43(3):215-23. PubMed ID: 2877548 [TBL] [Abstract][Full Text] [Related]
29. Interaction between Trypanosoma rangeli and the Rhodnius prolixus salivary gland depends on the phosphotyrosine ecto-phosphatase activity of the parasite. Dos-Santos AL; Dick CF; Alves-Bezerra M; Silveira TS; Paes LS; Gondim KC; Meyer-Fernandes JR Int J Parasitol; 2012 Aug; 42(9):819-27. PubMed ID: 22749957 [TBL] [Abstract][Full Text] [Related]
30. Temperature and parasite life-history are important modulators of the outcome of Trypanosoma rangeli-Rhodnius prolixus interactions. Rodrigues Jde O; Lorenzo MG; Martins-Filho OA; Elliot SL; Guarneri AA Parasitology; 2016 Sep; 143(11):1459-68. PubMed ID: 27460893 [TBL] [Abstract][Full Text] [Related]
31. Role of superoxide and reactive nitrogen intermediates in Rhodnius prolixus (Reduviidae)/Trypanosoma rangeli interactions. Whitten MM; Mello CB; Gomes SA; Nigam Y; Azambuja P; Garcia ES; Ratcliffe NA Exp Parasitol; 2001 May; 98(1):44-57. PubMed ID: 11426951 [TBL] [Abstract][Full Text] [Related]
32. Nitric oxide effects on Rhodnius prolixus's immune responses, gut microbiota and Trypanosoma cruzi development. Batista KKDS; Vieira CS; Florentino EB; Caruso KFB; Teixeira PTP; Moraes CDS; Genta FA; de Azambuja P; de Castro DP J Insect Physiol; 2020 Oct; 126():104100. PubMed ID: 32822690 [TBL] [Abstract][Full Text] [Related]
33. Experimental transmission of the parasitic flagellates Trypanosoma cruzi and Trypanosoma rangeli between triatomine bugs or mice and captive neotropical bats. Thomas ME; Rasweiler Iv JJ; D'Alessandro A Mem Inst Oswaldo Cruz; 2007 Aug; 102(5):559-65. PubMed ID: 17710299 [TBL] [Abstract][Full Text] [Related]
34. Differential modulation of Rhodnius prolixus nitric oxide activities following challenge with Trypanosoma rangeli, T. cruzi and bacterial cell wall components. Whitten M; Sun F; Tew I; Schaub G; Soukou C; Nappi A; Ratcliffe N Insect Biochem Mol Biol; 2007 May; 37(5):440-52. PubMed ID: 17456439 [TBL] [Abstract][Full Text] [Related]
35. Antiserum against perimicrovillar membranes and midgut tissue reduces the development of Trypanosoma cruzi in the insect vector, Rhodnius prolixus. Gonzalez MS; Hamedi A; Albuquerque-Cunha JM; Nogueira NF; De Souza W; Ratcliffe NA; Azambuja P; Garcia ES; Mello CB Exp Parasitol; 2006 Dec; 114(4):297-304. PubMed ID: 16759654 [TBL] [Abstract][Full Text] [Related]
36. Exploring the role of insect host factors in the dynamics of Trypanosoma cruzi-Rhodnius prolixus interactions. Garcia ES; Ratcliffe NA; Whitten MM; Gonzalez MS; Azambuja P J Insect Physiol; 2007 Jan; 53(1):11-21. PubMed ID: 17141801 [TBL] [Abstract][Full Text] [Related]
37. The NF-κB Inhibitor, IMD-0354, Affects Immune Gene Expression, Bacterial Microbiota and Vieira CS; Moreira OC; Batista KKS; Ratcliffe NA; Castro DP; Azambuja P Front Physiol; 2018; 9():1189. PubMed ID: 30233391 [No Abstract] [Full Text] [Related]
38. Rhodnius prolixus: Identification of missing components of the IMD immune signaling pathway and functional characterization of its role in eliminating bacteria. Salcedo-Porras N; Guarneri A; Oliveira PL; Lowenberger C PLoS One; 2019; 14(4):e0214794. PubMed ID: 30943246 [TBL] [Abstract][Full Text] [Related]
39. Effect of temperature and vector nutrition on the development and multiplication of Trypanosoma rangeli in Rhodnius prolixus. Ferreira RC; Teixeira CF; de Sousa VFA; Guarneri AA Parasitol Res; 2018 Jun; 117(6):1737-1744. PubMed ID: 29626223 [TBL] [Abstract][Full Text] [Related]
40. A Kazal-type inhibitor is modulated by Trypanosoma cruzi to control microbiota inside the anterior midgut of Rhodnius prolixus. Soares TS; Buarque DS; Queiroz BR; Gomes CM; Braz GR; Araújo RN; Pereira MH; Guarneri AA; Tanaka AS Biochimie; 2015 May; 112():41-8. PubMed ID: 25731714 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]