BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 27866911)

  • 1. Structural Insight into the Enzymatic Formation of Bacterial Stilbene.
    Mori T; Awakawa T; Shimomura K; Saito Y; Yang D; Morita H; Abe I
    Cell Chem Biol; 2016 Dec; 23(12):1468-1479. PubMed ID: 27866911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the formation of acylalkylpyrones from two β-ketoacyl units by the fungal type III polyketide synthase CsyB.
    Mori T; Yang D; Matsui T; Hashimoto M; Morita H; Fujii I; Abe I
    J Biol Chem; 2015 Feb; 290(8):5214-5225. PubMed ID: 25564614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergent evolution of the thiolase superfamily and chalcone synthase family.
    Jiang C; Kim SY; Suh DY
    Mol Phylogenet Evol; 2008 Dec; 49(3):691-701. PubMed ID: 18824113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissonance Strikes a Chord in Stilbene Synthesizers.
    Holland CK; Cascella B; Jez JM
    Cell Chem Biol; 2016 Dec; 23(12):1440-1441. PubMed ID: 28009974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid synthesis. Role of active site histidines and lysine in Cys-His-His-type beta-ketoacyl-acyl carrier protein synthases.
    von Wettstein-Knowles P; Olsen JG; McGuire KA; Henriksen A
    FEBS J; 2006 Feb; 273(4):695-710. PubMed ID: 16441657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa.
    Morita H; Wanibuchi K; Nii H; Kato R; Sugio S; Abe I
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19778-83. PubMed ID: 21041675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benzalacetone synthase.
    Shimokawa Y; Morita H; Abe I
    Front Plant Sci; 2012; 3():57. PubMed ID: 22645592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of reaction and substrate specificity of a bacterial type III polyketide synthase by site-directed mutagenesis.
    Funa N; Ohnishi Y; Ebizuka Y; Horinouchi S
    Biochem J; 2002 Nov; 367(Pt 3):781-9. PubMed ID: 12139488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical analysis of the substrate specificity of the beta-ketoacyl-acyl carrier protein synthase domain of module 2 of the erythromycin polyketide synthase.
    Wu J; Kinoshita K; Khosla C; Cane DE
    Biochemistry; 2004 Dec; 43(51):16301-10. PubMed ID: 15610024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of beta-ketoacyl-acyl carrier protein synthase II from Synechocystis sp. at 1.54 A resolution and its relationship to other condensing enzymes.
    Moche M; Dehesh K; Edwards P; Lindqvist Y
    J Mol Biol; 2001 Jan; 305(3):491-503. PubMed ID: 11152607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases.
    Austin MB; Bowman ME; Ferrer JL; Schröder J; Noel JP
    Chem Biol; 2004 Sep; 11(9):1179-94. PubMed ID: 15380179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis.
    Ferrer JL; Jez JM; Bowman ME; Dixon RA; Noel JP
    Nat Struct Biol; 1999 Aug; 6(8):775-84. PubMed ID: 10426957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a substrate complex of Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III (FabH) with lauroyl-coenzyme A.
    Musayev F; Sachdeva S; Scarsdale JN; Reynolds KA; Wright HT
    J Mol Biol; 2005 Mar; 346(5):1313-21. PubMed ID: 15713483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Claisen condensation in biology.
    Heath RJ; Rock CO
    Nat Prod Rep; 2002 Oct; 19(5):581-96. PubMed ID: 12430724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic formation of long-chain polyketide pyrones by plant type III polyketide synthases.
    Abe I; Watanabe T; Noguchi H
    Phytochemistry; 2004 Sep; 65(17):2447-53. PubMed ID: 15381408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the active site cysteine of DpgA, a bacterial type III polyketide synthase.
    Tseng CC; McLoughlin SM; Kelleher NL; Walsh CT
    Biochemistry; 2004 Feb; 43(4):970-80. PubMed ID: 14744141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How the Same Core Catalytic Machinery Catalyzes 17 Different Reactions: the Serine-Histidine-Aspartate Catalytic Triad of α/β-Hydrolase Fold Enzymes.
    Rauwerdink A; Kazlauskas RJ
    ACS Catal; 2015 Oct; 5(10):6153-6176. PubMed ID: 28580193
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Sucipto H; Sahner JH; Prusov E; Wenzel SC; Hartmann RW; Koehnke J; Müller R
    Chem Sci; 2015 Aug; 6(8):5076-5085. PubMed ID: 29308173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4-Hydroxy-3-methyl-6-(1-methyl-2-oxoalkyl)pyran-2-one synthesis by a type III polyketide synthase from Rhodospirillum centenum.
    Awakawa T; Sugai Y; Otsutomo K; Ren S; Masuda S; Katsuyama Y; Horinouchi S; Ohnishi Y
    Chembiochem; 2013 May; 14(8):1006-13. PubMed ID: 23609937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.