BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27867086)

  • 1. Diazoxide prevents reactive oxygen species and mitochondrial damage, leading to anti-hypertrophic effects.
    Lucas AM; Caldas FR; da Silva AP; Ventura MM; Leite IM; Filgueiras AB; Silva CG; Kowaltowski AJ; Facundo HT
    Chem Biol Interact; 2017 Jan; 261():50-55. PubMed ID: 27867086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diazoxide Modulates Cardiac Hypertrophy by Targeting H2O2 Generation and Mitochondrial Superoxide Dismutase Activity.
    Lucas AMB; de Lacerda Alexandre JV; Araújo MTS; David CEB; Ponte Viana YI; Coelho BN; Caldas FRL; Varela ALN; Kowaltowski AJ; Facundo HT
    Curr Mol Pharmacol; 2020; 13(1):76-83. PubMed ID: 31340743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calorie restriction attenuates hypertrophy-induced redox imbalance and mitochondrial ATP-sensitive K
    David CEB; Lucas AMB; Araújo MTS; Coelho BN; Neto JBS; Portela BRC; Varela ALN; Kowaltowski AJ; Facundo HT
    J Nutr Biochem; 2018 Dec; 62():87-94. PubMed ID: 30286377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial ATP-sensitive potassium channel opening inhibits isoproterenol-induced cardiac hypertrophy by preventing oxidative damage.
    Lemos Caldas FR; Rocha Leite IM; Tavarez Filgueiras AB; de Figueiredo Júnior IL; Gomes Marques de Sousa TA; Martins PR; Kowaltowski AJ; Fernandes Facundo Hd
    J Cardiovasc Pharmacol; 2015 Apr; 65(4):393-7. PubMed ID: 25850726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closure of mitochondrial potassium channels favors opening of the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.
    Korotkov SM; Brailovskaya IV; Shumakov AR; Emelyanova LV
    J Bioenerg Biomembr; 2015 Jun; 47(3):243-54. PubMed ID: 25869491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioenergetic and volume regulatory effects of mitoKATP channel modulators protect against hypoxia-reoxygenation-induced mitochondrial dysfunction.
    Onukwufor JO; Stevens D; Kamunde C
    J Exp Biol; 2016 Sep; 219(Pt 17):2743-51. PubMed ID: 27358470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ischemic preconditioning requires increases in reactive oxygen release independent of mitochondrial K+ channel activity.
    Facundo HT; Carreira RS; de Paula JG; Santos CC; Ferranti R; Laurindo FR; Kowaltowski AJ
    Free Radic Biol Med; 2006 Feb; 40(3):469-79. PubMed ID: 16443162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of Diazoxide on norepinephrine-induced cardiac hypertrophy, in vitro.
    Guven C
    Cell Mol Biol (Noisy-le-grand); 2018 Jul; 64(10):50-54. PubMed ID: 30084794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desmodium gangeticum (Linn.) DC. exhibits antihypertrophic effect in isoproterenol-induced cardiomyoblasts via amelioration of oxidative stress and mitochondrial alterations.
    Sankar V; Pangayarselvi B; Prathapan A; Raghu KG
    J Cardiovasc Pharmacol; 2013 Jan; 61(1):23-34. PubMed ID: 23052030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection.
    Hausenloy D; Wynne A; Duchen M; Yellon D
    Circulation; 2004 Apr; 109(14):1714-7. PubMed ID: 15066952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT.
    Costa AD; Garlid KD
    Am J Physiol Heart Circ Physiol; 2008 Aug; 295(2):H874-82. PubMed ID: 18586884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial reactive oxygen species: which ROS signals cardioprotection?
    Garlid AO; Jaburek M; Jacobs JP; Garlid KD
    Am J Physiol Heart Circ Physiol; 2013 Oct; 305(7):H960-8. PubMed ID: 23913710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory uncoupling by increased H(+) or K(+) flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition.
    Morota S; Piel S; Hansson MJ
    BMC Cell Biol; 2013 Sep; 14():40. PubMed ID: 24053891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Regulation of the mitochondrial ATP-sensitive potassium channel in rat uterus cells by ROS].
    Badziuk OB; Mazur IuIu; Kosterin SO
    Ukr Biokhim Zh (1999); 2011; 83(3):48-57. PubMed ID: 21888054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effect of Boerhaavia diffusa L. against mitochondrial dysfunction in angiotensin II induced hypertrophy in H9c2 cardiomyoblast cells.
    Prathapan A; Vineetha VP; Raghu KG
    PLoS One; 2014; 9(4):e96220. PubMed ID: 24788441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calorie restriction anti-hypertrophic effects are associated with improved mitochondrial content, blockage of Ca
    Brito Lucas AM; Bezerra Palacio P; Oliveira Cunha PL; Tarso Facundo H
    Free Radic Res; 2024; 58(4):293-310. PubMed ID: 38630026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-treatment of a single high-dose of atorvastatin provided cardioprotection in different ischaemia/reperfusion models via activating mitochondrial KATP channel.
    Zhao Z; Cui W; Zhang H; Gao H; Li X; Wang Y; Hu H; Li B
    Eur J Pharmacol; 2015 Mar; 751():89-98. PubMed ID: 25641746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catestatin reduces myocardial ischaemia/reperfusion injury: involvement of PI3K/Akt, PKCs, mitochondrial KATP channels and ROS signalling.
    Perrelli MG; Tullio F; Angotti C; Cerra MC; Angelone T; Tota B; Alloatti G; Penna C; Pagliaro P
    Pflugers Arch; 2013 Jul; 465(7):1031-40. PubMed ID: 23319164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury.
    Sloan RC; Moukdar F; Frasier CR; Patel HD; Bostian PA; Lust RM; Brown DA
    J Mol Cell Cardiol; 2012 May; 52(5):1009-18. PubMed ID: 22406429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels.
    Hu H; Sato T; Seharaseyon J; Liu Y; Johns DC; O'Rourke B; Marbán E
    Mol Pharmacol; 1999 Jun; 55(6):1000-5. PubMed ID: 10347240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.