BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27867209)

  • 1. Adsorption and desorption of arsenic to aquifer sediment on the Red River floodplain at Nam Du, Vietnam.
    Thi Hoa Mai N; Postma D; Thi Kim Trang P; Jessen S; Hung Viet P; Larsen F
    Geochim Cosmochim Acta; 2014 Oct; 142():587-600. PubMed ID: 27867209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural attenuation of arsenic by sediment sorption and oxidation.
    Choi S; O'Day PA; Hering JG
    Environ Sci Technol; 2009 Jun; 43(12):4253-9. PubMed ID: 19603631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate immobilisation dynamics and interaction with arsenic sorption at redox transition zones in floodplain aquifers: Insights from the Red River Delta, Vietnam.
    Neidhardt H; Rudischer S; Eiche E; Schneider M; Stopelli E; Duyen VT; Trang PTK; Viet PH; Neumann T; Berg M
    J Hazard Mater; 2021 Jun; 411():125128. PubMed ID: 33485236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic attenuation by oxidized aquifer sediments in Bangladesh.
    Stollenwerk KG; Breit GN; Welch AH; Yount JC; Whitney JW; Foster AL; Uddin MN; Majumder RK; Ahmed N
    Sci Total Environ; 2007 Jul; 379(2-3):133-50. PubMed ID: 17250876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural attenuation processes of arsenic in the groundwater of the Brahmaputra floodplain of Assam, India.
    Sailo L; Mahanta C
    Environ Sci Process Impacts; 2016 Jan; 18(1):115-25. PubMed ID: 26647841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam.
    Postma D; Trang PT; Sø HU; Van Hoan H; Lan VM; Thai NT; Larsen F; Viet PH; Jakobsen R
    Geochim Cosmochim Acta; 2016 Dec; 195():277-292. PubMed ID: 27867210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into arsenic retention dynamics of Pleistocene aquifer sediments by in situ sorption experiments.
    Neidhardt H; Winkel LHE; Kaegi R; Stengel C; Trang PTK; Lan VM; Viet PH; Berg M
    Water Res; 2018 Feb; 129():123-132. PubMed ID: 29145082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam.
    Postma D; Mai NT; Lan VM; Trang PT; Sø HU; Nhan PQ; Larsen F; Viet PH; Jakobsen R
    Environ Sci Technol; 2017 Jan; 51(2):838-845. PubMed ID: 27958705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field, experimental, and modeling study of arsenic partitioning across a redox transition in a Bangladesh aquifer.
    Jung HB; Bostick BC; Zheng Y
    Environ Sci Technol; 2012 Feb; 46(3):1388-95. PubMed ID: 22201284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in central Bangladesh.
    Shamsudduha M; Uddin A; Saunders JA; Lee MK
    J Contam Hydrol; 2008 Jul; 99(1-4):112-36. PubMed ID: 18502538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field, laboratory, and modeling study of reactive transport of groundwater arsenic in a coastal aquifer.
    Jung HB; Charette MA; Zheng Y
    Environ Sci Technol; 2009 Jul; 43(14):5333-8. PubMed ID: 19708362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gel probe equilibrium sampler for measuring arsenic porewater profiles and sorption gradients in sediments: II. Field application to Haiwee Reservoir sediment.
    Campbell KM; Root R; O'Day PA; Hering JG
    Environ Sci Technol; 2008 Jan; 42(2):504-10. PubMed ID: 18284154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and desorption behavior of arsenite and arsenate at river sediment-water interface.
    Nguyen KT; Navidpour AH; Ahmed MB; Mojiri A; Huang Y; Zhou JL
    J Environ Manage; 2022 Sep; 317():115497. PubMed ID: 35751289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidences on As(III) and As(V) interaction with iron(III) oxides: Hematite and goethite.
    Ajith N; Satpati AK; Debnath AK; Swain KK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(9):1007-1018. PubMed ID: 34387542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer
    Kent DB; Fox PM
    Geochem Trans; 2004; 5(1):1. PubMed ID: 35412763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic contamination in groundwater and its possible sources in Hanam, Vietnam.
    Phuong NM; Kang Y; Sakurai K; Sugihara M; Kien CN; Bang ND; Ngoc HM
    Environ Monit Assess; 2012 Jul; 184(7):4501-15. PubMed ID: 21830065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ arsenic remediation by aquifer iron coating: Field trial in the Datong basin, China.
    Xie X; Pi K; Liu Y; Liu C; Li J; Zhu Y; Su C; Ma T; Wang Y
    J Hazard Mater; 2016 Jan; 302():19-26. PubMed ID: 26448490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox buffering and de-coupling of arsenic and iron in reducing aquifers across the Red River Delta, Vietnam, and conceptual model of de-coupling processes.
    Sracek O; Berg M; Müller B
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15954-15961. PubMed ID: 29589241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mass balance approach to investigate arsenic cycling in a petroleum plume.
    Ziegler BA; Schreiber ME; Cozzarelli IM; Crystal Ng GH
    Environ Pollut; 2017 Dec; 231(Pt 2):1351-1361. PubMed ID: 28943347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.