These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27867710)

  • 1. Intraocular scattering compensation in retinal imaging.
    Christaras D; Ginis H; Pennos A; Artal P
    Biomed Opt Express; 2016 Oct; 7(10):3996-4006. PubMed ID: 27867710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shack-Hartmann-based objective straylight assessment of the human eye in an increased scattering angle range.
    Schramm S; Schikowski P; Lerm E; Kaeding A; Haueisen J; Baumgarten D
    J Biomed Opt; 2016 Jul; 21(7):76003. PubMed ID: 27380449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scattering contribution to the double-pass PSF using Monte Carlo simulations.
    Christaras D; Ginis H; Pennos A; Artal P
    Ophthalmic Physiol Opt; 2017 May; 37(3):342-346. PubMed ID: 28439979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The wide-angle point spread function of the human eye reconstructed by a new optical method.
    Ginis H; Pérez GM; Bueno JM; Artal P
    J Vis; 2012 Mar; 12(3):. PubMed ID: 22451158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying intraocular scatter with near diffraction-limited double-pass point spread function.
    Zhao J; Xiao F; Kang J; Zhao H; Dai Y; Zhang Y
    Biomed Opt Express; 2016 Nov; 7(11):4595-4604. PubMed ID: 27895998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A postprocessing method for compensation of scatter and collimator blurring in SPECT: a proof-of-concept study.
    Yan Y; Zeng GL
    J Nucl Med Technol; 2009 Jun; 37(2):83-90. PubMed ID: 19447851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraocular scatter compensation with spatial light amplitude modulation for improved vision in simulated cataractous eyes.
    Panezai S; Jiménez-Villar A; Paniagua Diaz AM; Arias A; Gondek G; Manzanera S; Artal P; Grulkowski I
    Biomed Opt Express; 2022 Apr; 13(4):2174-2185. PubMed ID: 35519252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a differential contrast sensitivity method to measure intraocular scattering.
    Pennos A; Ginis H; Arias A; Christaras D; Artal P
    Biomed Opt Express; 2017 Mar; 8(3):1382-1389. PubMed ID: 28663835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining in vitro test methods for measuring light scatter in intraocular lenses.
    van der Mooren M; van den Berg T; Coppens J; Piers P
    Biomed Opt Express; 2011 Feb; 2(3):505-10. PubMed ID: 21412456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spherical Aberration and Scattering Compensation in Microscopy Images through a Blind Deconvolution Method.
    Ávila FJ; Bueno JM
    J Imaging; 2024 Feb; 10(2):. PubMed ID: 38392091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging.
    Dong X; Niu T; Jia X; Zhu L
    Med Phys; 2012 Oct; 39(10):5901-9. PubMed ID: 23039629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confocal fundus imaging with a scanning laser ophthalmoscope in eyes with cataract.
    Beckman C; Bond-Taylor L; Lindblom B; Sjöstrand J
    Br J Ophthalmol; 1995 Oct; 79(10):900-4. PubMed ID: 7488577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of intraocular scattering in macular pigment optical density measurements.
    Christaras D; Pennos A; Ginis H; Artal P
    J Biomed Opt; 2018 May; 23(5):1-7. PubMed ID: 29745133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for differentiating ocular higher-order aberrations from light scatter applied to retinitis pigmentosa.
    Shahidi M; Yang Y; Rajagopalan AS; Alexander KR; Zelkha R; Fishman GA
    Optom Vis Sci; 2005 Nov; 82(11):976-80. PubMed ID: 16317374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images.
    Fan C; Wu C; Li G; Ma J
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument.
    Díaz-Doutón F; Benito A; Pujol J; Arjona M; Güell JL; Artal P
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1710-6. PubMed ID: 16565413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelength dependence of the ocular straylight.
    Ginis HS; Perez GM; Bueno JM; Pennos A; Artal P
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3702-8. PubMed ID: 23599338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.