BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27867734)

  • 1.
    Zeidan A; Golan L; Yelin D
    Biomed Opt Express; 2016 Oct; 7(10):4327-4334. PubMed ID: 27867734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflectance confocal microscopy of red blood cells: simulation and experiment.
    Zeidan A; Yelin D
    Biomed Opt Express; 2015 Nov; 6(11):4335-43. PubMed ID: 26600999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometry using spectrally encoded confocal microscopy.
    Golan L; Yelin D
    Opt Lett; 2010 Jul; 35(13):2218-20. PubMed ID: 20596199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring the red blood cell shape in capillary flow using spectrally encoded flow cytometry.
    Fridman L; Yelin D
    Biomed Opt Express; 2022 Sep; 13(9):4583-4591. PubMed ID: 36187245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry.
    Golan L; Yeheskely-Hayon D; Minai L; Dann EJ; Yelin D
    Biomed Opt Express; 2012 Jun; 3(6):1455-64. PubMed ID: 22741090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring sickle cell morphology during blood flow.
    Kviatkovsky I; Zeidan A; Yeheskely-Hayon D; Shabad EL; Dann EJ; Yelin D
    Biomed Opt Express; 2017 Mar; 8(3):1996-2003. PubMed ID: 28663878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring blood velocity using correlative spectrally encoded flow cytometry.
    Elhanan T; Yelin D
    Opt Lett; 2014 Aug; 39(15):4424-6. PubMed ID: 25078193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-area spectrally encoded confocal endomicroscopy of the human esophagus in vivo.
    Kang D; Schlachter SC; Carruth RW; Kim M; Wu T; Tabatabaei N; Soomro AR; Grant CN; Rosenberg M; Nishioka NS; Tearney GJ
    Lasers Surg Med; 2017 Mar; 49(3):233-239. PubMed ID: 27636715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.
    Serban ED; Farnetani F; Pellacani G; Constantin MM
    Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of regional myocardial oxygen supply in the left ventricle. An experimental study in the in situ working canine heart.
    Eliasen P
    Dan Med Bull; 1987 Dec; 34(6):277-89. PubMed ID: 3325232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of oxygen saturation and hematocrit of flowing human blood using two different spectrally resolving sensors.
    Meinke M; Müller G; Gersonde I; Friebel M
    Biomed Tech (Berl); 2006 Dec; 51(5-6):347-54. PubMed ID: 17155871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model.
    Brizel DM; Klitzman B; Cook JM; Edwards J; Rosner G; Dewhirst MW
    Int J Radiat Oncol Biol Phys; 1993 Jan; 25(2):269-76. PubMed ID: 8420874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red cell distribution at microvascular bifurcations.
    Pries AR; Ley K; Claassen M; Gaehtgens P
    Microvasc Res; 1989 Jul; 38(1):81-101. PubMed ID: 2761434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed interferometric spectrally encoded flow cytometry.
    Golan L; Yeheskely-Hayon D; Minai L; Yelin D
    Opt Lett; 2012 Dec; 37(24):5154-6. PubMed ID: 23258036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    J Biomech; 2008 Jul; 41(10):2188-96. PubMed ID: 18589429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hematocrit correlates well with circulating red blood cell volume in very low birth weight infants.
    Mock DM; Bell EF; Lankford GL; Widness JA
    Pediatr Res; 2001 Oct; 50(4):525-31. PubMed ID: 11568298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method.
    Capiau S; Wilk LS; De Kesel PMM; Aalders MCG; Stove CP
    Anal Chem; 2018 Feb; 90(3):1795-1804. PubMed ID: 29281263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of complete blood count results from a new, on-site hemocytometer compared with a laboratory-based hemocytometer.
    Despotis GJ; Alsoufiev A; Hogue CW; Zoys TN; Goodnough LT; Santoro SA; Kater KM; Barnes P; Lappas DG
    Crit Care Med; 1996 Jul; 24(7):1163-7. PubMed ID: 8674329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid wavelength-swept spectrally encoded confocal microscopy.
    Boudoux C; Yun S; Oh W; White W; Iftimia N; Shishkov M; Bouma B; Tearney G
    Opt Express; 2005 Oct; 13(20):8214-21. PubMed ID: 19498851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-automatized segmentation method using image-based flow cytometry to study sperm physiology: the case of capacitation-induced tyrosine phosphorylation.
    Matamoros-Volante A; Moreno-Irusta A; Torres-Rodriguez P; Giojalas L; Gervasi MG; Visconti PE; Treviño CL
    Mol Hum Reprod; 2018 Feb; 24(2):64-73. PubMed ID: 29186618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.