These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27867735)

  • 1. Spectrally-broad coherent anti-Stokes Raman scattering hyper-microscopy utilizing a Stokes supercontinuum pumped at 800 nm.
    Porquez JG; Cole RA; Tabarangao JT; Slepkov AD
    Biomed Opt Express; 2016 Oct; 7(10):4335-4345. PubMed ID: 27867735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering.
    Chen BC; Sung J; Wu X; Lim SH
    J Biomed Opt; 2011 Feb; 16(2):021112. PubMed ID: 21361675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region.
    Chen BC; Sung J; Lim SH
    J Phys Chem B; 2010 Dec; 114(50):16871-80. PubMed ID: 21126030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths.
    Murugkar S; Brideau C; Ridsdale A; Naji M; Stys PK; Anis H
    Opt Express; 2007 Oct; 15(21):14028-37. PubMed ID: 19550675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator.
    Pegoraro AF; Ridsdale A; Moffatt DJ; Jia Y; Pezacki JP; Stolow A
    Opt Express; 2009 Feb; 17(4):2984-96. PubMed ID: 19219203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a high power Yb fiber-based laser compatible with commercial optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy.
    Hage CH; Boisset S; Ibrahim A; Morin F; Hoenninger C; Grunske T; Souissi S; Heliot L; Leray A
    Microsc Res Tech; 2014 Jun; 77(6):422-30. PubMed ID: 24710794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses.
    Chen K; Wu T; Wei H; Zhou T; Li Y
    Biomed Opt Express; 2016 Oct; 7(10):3927-3939. PubMed ID: 27867704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Picosecond supercontinuum generation in large mode area photonic crystal fibers for coherent anti-Stokes Raman scattering microspectroscopy.
    Shen Y; Voronin AA; Zheltikov AM; O'Connor SP; Yakovlev VV; Sokolov AV; Scully MO
    Sci Rep; 2018 Jun; 8(1):9526. PubMed ID: 29934620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chirped coherent anti-stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging.
    Knutsen KP; Messer BM; Onorato RM; Saykally RJ
    J Phys Chem B; 2006 Mar; 110(12):5854-64. PubMed ID: 16553391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift.
    Andresen ER; Birkedal V; Thøgersen J; Keiding SR
    Opt Lett; 2006 May; 31(9):1328-30. PubMed ID: 16642101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining optimum operating conditions of the polarization-maintaining fiber with two far-lying zero dispersion wavelengths for CARS microscopy.
    Naji M; Murugkar S; Anis H
    Opt Express; 2014 May; 22(9):10800-14. PubMed ID: 24921780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single fiber laser based wavelength tunable excitation for CRS spectroscopy.
    Su J; Xie R; Johnson CK; Hui R
    J Opt Soc Am B; 2013 Jun; 30(6):1671-1682. PubMed ID: 23950620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total internal reflection enabled wide-field coherent anti-Stokes Raman scattering microscopy.
    Doughty B; Premadasa UI; Cahill JF; Webb AB; Morrell-Falvey JL; Khalid M; Retterer ST; Ma YZ
    Opt Lett; 2020 Jun; 45(11):3087-3090. PubMed ID: 32479466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers.
    Klarskov P; Isomäki A; Hansen KP; Andersen PE
    Opt Express; 2011 Dec; 19(27):26672-83. PubMed ID: 22274252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brighter CARS hypermicroscopy via "spectral surfing" of a Stokes supercontinuum.
    Porquez JG; Cole RA; Tabarangao JT; Slepkov AD
    Opt Lett; 2017 Jun; 42(12):2255-2258. PubMed ID: 28614325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible and stable optical parametric oscillator based laser system for coherent anti-Stokes Raman scattering microscopy.
    Zhang W; Parsons M; McConnell G
    Microsc Res Tech; 2010 Jun; 73(6):650-6. PubMed ID: 19941296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope.
    Mytskaniuk V; Bardin F; Boukhaddaoui H; Rigneault H; Tricaud N
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser.
    Pope I; Langbein W; Watson P; Borri P
    Opt Express; 2013 Mar; 21(6):7096-106. PubMed ID: 23546091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrally combined four-diode-pumped femtosecond Ti:sapphire laser with 16.3 nJ pulse and its application to video-rate coherent anti-Stokes Raman scattering spectro-microscopy.
    Song DH; Huh C; Seo HS
    Opt Express; 2023 Jan; 31(2):3269-3277. PubMed ID: 36785323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.