These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 27868162)
1. The choice of a constitutive formulation for modeling limb flexion-induced deformations and stresses in the human femoropopliteal arteries of different ages. Desyatova A; MacTaggart J; Poulson W; Deegan P; Lomneth C; Sandip A; Kamenskiy A Biomech Model Mechanobiol; 2017 Jun; 16(3):775-785. PubMed ID: 27868162 [TBL] [Abstract][Full Text] [Related]
2. Effect of aging on mechanical stresses, deformations, and hemodynamics in human femoropopliteal artery due to limb flexion. Desyatova A; MacTaggart J; Romarowski R; Poulson W; Conti M; Kamenskiy A Biomech Model Mechanobiol; 2018 Feb; 17(1):181-189. PubMed ID: 28815378 [TBL] [Abstract][Full Text] [Related]
3. Mechanical damage characterization in human femoropopliteal arteries of different ages. Anttila E; Balzani D; Desyatova A; Deegan P; MacTaggart J; Kamenskiy A Acta Biomater; 2019 May; 90():225-240. PubMed ID: 30928732 [TBL] [Abstract][Full Text] [Related]
4. Constitutive modeling of human femoropopliteal artery biaxial stiffening due to aging and diabetes. Desyatova A; MacTaggart J; Kamenskiy A Acta Biomater; 2017 Dec; 64():50-58. PubMed ID: 28974476 [TBL] [Abstract][Full Text] [Related]
5. Constitutive description of human femoropopliteal artery aging. Kamenskiy A; Seas A; Deegan P; Poulson W; Anttila E; Sim S; Desyatova A; MacTaggart J Biomech Model Mechanobiol; 2017 Apr; 16(2):681-692. PubMed ID: 27771811 [TBL] [Abstract][Full Text] [Related]
6. Limb flexion-induced twist and associated intramural stresses in the human femoropopliteal artery. Desyatova A; Poulson W; Deegan P; Lomneth C; Seas A; Maleckis K; MacTaggart J; Kamenskiy A J R Soc Interface; 2017 Mar; 14(128):. PubMed ID: 28330991 [TBL] [Abstract][Full Text] [Related]
7. Limb flexion-induced axial compression and bending in human femoropopliteal artery segments. Poulson W; Kamenskiy A; Seas A; Deegan P; Lomneth C; MacTaggart J J Vasc Surg; 2018 Feb; 67(2):607-613. PubMed ID: 28526560 [TBL] [Abstract][Full Text] [Related]
8. A viscoelastic constitutive model for human femoropopliteal arteries. Zhang W; Jadidi M; Razian SA; Holzapfel GA; Kamenskiy A; Nordsletten DA Acta Biomater; 2023 Oct; 170():68-85. PubMed ID: 37699504 [TBL] [Abstract][Full Text] [Related]
9. Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Kamenskiy AV; Pipinos II; Dzenis YA; Phillips NY; Desyatova AS; Kitson J; Bowen R; MacTaggart JN Acta Biomater; 2015 Jan; 11():304-13. PubMed ID: 25301303 [TBL] [Abstract][Full Text] [Related]
10. Cross-sectional pinching in human femoropopliteal arteries due to limb flexion, and stent design optimization for maximum cross-sectional opening and minimum intramural stresses. Desyatova A; Poulson W; MacTaggart J; Maleckis K; Kamenskiy A J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30135264 [TBL] [Abstract][Full Text] [Related]
11. Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries. Kamenskiy AV; Pipinos II; Dzenis YA; Lomneth CS; Kazmi SA; Phillips NY; MacTaggart JN Acta Biomater; 2014 Mar; 10(3):1301-13. PubMed ID: 24370640 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion. MacTaggart JN; Phillips NY; Lomneth CS; Pipinos II; Bowen R; Baxter BT; Johanning J; Longo GM; Desyatova AS; Moulton MJ; Dzenis YA; Kamenskiy AV J Biomech; 2014 Jul; 47(10):2249-56. PubMed ID: 24856888 [TBL] [Abstract][Full Text] [Related]
14. Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden-Gasser-Holzapfel bilayer. Nguyen N; Nath N; Deseri L; Tzeng E; Velankar SS; Pocivavsek L Biomech Model Mechanobiol; 2020 Dec; 19(6):2375-2395. PubMed ID: 32535739 [TBL] [Abstract][Full Text] [Related]
15. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035 [TBL] [Abstract][Full Text] [Related]
16. A viscoelastic constitutive framework for aging muscular and elastic arteries. Zhang W; Jadidi M; Razian SA; Holzapfel GA; Kamenskiy A; Nordsletten DA Acta Biomater; 2024 Oct; 188():223-241. PubMed ID: 39303831 [TBL] [Abstract][Full Text] [Related]
17. Structural and Mechanical Properties of Human Superficial Femoral and Popliteal Arteries. Shahbad R; Pipinos M; Jadidi M; Desyatova A; Gamache J; MacTaggart J; Kamenskiy A Ann Biomed Eng; 2024 Apr; 52(4):794-815. PubMed ID: 38321357 [TBL] [Abstract][Full Text] [Related]
18. Mechanical, structural, and physiologic differences between above and below-knee human arteries. Struczewska P; Razian SA; Townsend K; Jadidi M; Shahbad R; Zamani E; Gamache J; MacTaggart J; Kamenskiy A Acta Biomater; 2024 Mar; 177():278-299. PubMed ID: 38307479 [TBL] [Abstract][Full Text] [Related]
19. In situ longitudinal pre-stretch in the human femoropopliteal artery. Kamenskiy A; Seas A; Bowen G; Deegan P; Desyatova A; Bohlim N; Poulson W; MacTaggart J Acta Biomater; 2016 Mar; 32():231-237. PubMed ID: 26766633 [TBL] [Abstract][Full Text] [Related]
20. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software. Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]