These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2786817)

  • 1. Retinomotor movements in the frog retinal pigment epithelium: dependence of pigment migration on Na+ and Ca2+.
    Mondragón R; Frixione E
    Exp Eye Res; 1989 May; 48(5):589-603. PubMed ID: 2786817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional inhibition of screening-pigment aggregation by lidocaine in crayfish photoreceptors and frog retinal pigment epithelium.
    Mondragón R; Frixione E
    J Exp Biol; 1992 May; 166():197-214. PubMed ID: 1602275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors.
    Dearry A; Edelman JL; Miller S; Burnside B
    J Neurochem; 1990 Apr; 54(4):1367-78. PubMed ID: 2156019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas.
    Dearry A; Burnside B
    J Gen Physiol; 1984 Apr; 83(4):589-611. PubMed ID: 6202826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinomotor pigment migration in the teleost retinal pigment epithelium. I. Roles for actin and microtubules in pigment granule transport and cone movement.
    Burnside B; Adler R; O'Connor P
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):1-15. PubMed ID: 6826305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinomotor pigment migration in the teleost retinal pigment epithelium. II. Cyclic-3',5'-adenosine monophosphate induction of dark-adaptive movement in vitro.
    Burnside B; Basinger S
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):16-23. PubMed ID: 6186630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE.
    Cavallaro B; Burnside B
    Invest Ophthalmol Vis Sci; 1988 Jun; 29(6):882-91. PubMed ID: 3131263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-independent regulation of pigment granule aggregation and dispersion in teleost retinal pigment epithelial cells.
    King-Smith C; Chen P; Garcia D; Rey H; Burnside B
    J Cell Sci; 1996 Jan; 109 ( Pt 1)():33-43. PubMed ID: 8834788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for calcium in the migration of retinal screening pigment in the frog.
    Synder WZ; Zadunaisky JA
    Exp Eye Res; 1976 Apr; 22(4):377-88. PubMed ID: 1085257
    [No Abstract]   [Full Text] [Related]  

  • 10. Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium.
    Dearry A; Burnside B
    J Neurochem; 1989 Sep; 53(3):870-8. PubMed ID: 2547905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active ion transport pathways in the bovine retinal pigment epithelium.
    Miller SS; Edelman JL
    J Physiol; 1990 May; 424():283-300. PubMed ID: 1697344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time course and development of light adaptation processes in the outer zebrafish retina.
    Hodel C; Neuhauss SC; Biehlmaier O
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jun; 288(6):653-62. PubMed ID: 16721865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2 receptors.
    Dearry A; Burnside B
    J Neurochem; 1986 Apr; 46(4):1006-21. PubMed ID: 2869104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of circadian rhythm and cAMP on retinomotor movements in the green sunfish, Lepomis cyanellus.
    Burnside B; Ackland N
    Invest Ophthalmol Vis Sci; 1984 May; 25(5):539-45. PubMed ID: 6325366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dopamine inhibits forskolin- and 3-isobutyl-1-methylxanthine-induced dark-adaptive retinomotor movements in isolated teleost retinas.
    Dearry A; Burnside B
    J Neurochem; 1985 Jun; 44(6):1753-63. PubMed ID: 2580951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the retinal interphotoreceptor matrix Na by the retinal pigment epithelium during the light response.
    Hodson S; Armstrong I; Wigham C
    Experientia; 1994 May; 50(5):438-41. PubMed ID: 8194579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of ouabain and 2,4-dinitrophenol on contractile tension of and on sodium and calcium efflux from frog heart ventricular strips.
    Ocampo MC; Orrego F
    Br J Pharmacol; 1981 Oct; 74(2):341-51. PubMed ID: 6797495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium regulates some, but not all, aspects of light adaptation in rod photoreceptors.
    Nicol GD; Bownds MD
    J Gen Physiol; 1989 Aug; 94(2):233-59. PubMed ID: 2507738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pHi regulation in frog retinal pigment epithelium: two apical membrane mechanisms.
    Lin H; Miller SS
    Am J Physiol; 1991 Jul; 261(1 Pt 1):C132-42. PubMed ID: 1858851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin A and the role of the pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye.
    Bridges CD
    Exp Eye Res; 1976 May; 22(5):435-55. PubMed ID: 1084281
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.