These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 27868265)
1. High-throughput physiological phenotyping and screening system for the characterization of plant-environment interactions. Halperin O; Gebremedhin A; Wallach R; Moshelion M Plant J; 2017 Feb; 89(4):839-850. PubMed ID: 27868265 [TBL] [Abstract][Full Text] [Related]
2. Thermography to explore plant-environment interactions. Costa JM; Grant OM; Chaves MM J Exp Bot; 2013 Oct; 64(13):3937-49. PubMed ID: 23599272 [TBL] [Abstract][Full Text] [Related]
3. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency. Ryan AC; Dodd IC; Rothwell SA; Jones R; Tardieu F; Draye X; Davies WJ Plant Sci; 2016 Oct; 251():101-109. PubMed ID: 27593468 [TBL] [Abstract][Full Text] [Related]
4. Differences in gas exchange contribute to habitat differentiation in Iberian columbines from contrasting light and water environments. Jaime R; Serichol C; Alcántara JM; Rey PJ Plant Biol (Stuttg); 2014 Mar; 16(2):354-64. PubMed ID: 23957244 [TBL] [Abstract][Full Text] [Related]
5. Quantitative and comparative analysis of whole-plant performance for functional physiological traits phenotyping: New tools to support pre-breeding and plant stress physiology studies. Gosa SC; Lupo Y; Moshelion M Plant Sci; 2019 May; 282():49-59. PubMed ID: 31003611 [TBL] [Abstract][Full Text] [Related]
6. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Sharma DK; Andersen SB; Ottosen CO; Rosenqvist E Physiol Plant; 2015 Feb; 153(2):284-98. PubMed ID: 24962705 [TBL] [Abstract][Full Text] [Related]
7. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period]. Schulze ED; Lange OL; Koch W Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070 [TBL] [Abstract][Full Text] [Related]
8. How does drought tolerance compare between two improved hybrids of balsam poplar and an unimproved native species? Larchevêque M; Maurel M; Desrochers A; Larocque GR Tree Physiol; 2011 Mar; 31(3):240-9. PubMed ID: 21444373 [TBL] [Abstract][Full Text] [Related]
9. Above- and belowground controls on water use by trees of different wood types in an eastern US deciduous forest. Meinzer FC; Woodruff DR; Eissenstat DM; Lin HS; Adams TS; McCulloh KA Tree Physiol; 2013 Apr; 33(4):345-56. PubMed ID: 23513033 [TBL] [Abstract][Full Text] [Related]
10. [Responses of agricultural crops of free-air CO2 enrichment]. Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686 [TBL] [Abstract][Full Text] [Related]
11. [Coordination effect between vapor water loss through plant stomata and liquid water supply in soil-plant-atmosphere continuum (SPAC): a review]. Liu LM; Qi H; Luo XL; Zhang X Ying Yong Sheng Tai Xue Bao; 2008 Sep; 19(9):2067-73. PubMed ID: 19102325 [TBL] [Abstract][Full Text] [Related]
12. Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions. Torres-Ruiz JM; Diaz-Espejo A; Perez-Martin A; Hernandez-Santana V Tree Physiol; 2015 Apr; 35(4):415-24. PubMed ID: 25030936 [TBL] [Abstract][Full Text] [Related]
13. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation. Aspinwall MJ; King JS; McKeand SE; Domec JC Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004 [TBL] [Abstract][Full Text] [Related]
14. Diel trends in stomatal response to ozone and water deficit: a unique relationship of midday values to growth and allometry in Pima cotton? Grantz DA; Paudel R; Vu HB; Shrestha A; Grulke N Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():37-46. PubMed ID: 26031549 [TBL] [Abstract][Full Text] [Related]
15. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603 [TBL] [Abstract][Full Text] [Related]
16. Interactive effect of water and nitrogen regimes on plant growth, root traits and water status of old and modern durum wheat genotypes. Elazab A; Serret MD; Araus JL Planta; 2016 Jul; 244(1):125-44. PubMed ID: 26992389 [TBL] [Abstract][Full Text] [Related]
17. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period]. Schulze E-; Lange OL; Koch W Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256 [TBL] [Abstract][Full Text] [Related]
18. A novel root-to-shoot stomatal response to very high CO Lake JA; Walker HJ; Cameron DD; Lomax BH Physiol Plant; 2017 Apr; 159(4):433-444. PubMed ID: 27779760 [TBL] [Abstract][Full Text] [Related]
19. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ; Carlo N; Clark KL; Schäfer KV Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [TBL] [Abstract][Full Text] [Related]
20. Size-dependent enhancement of water relations during post-fire resprouting. Schafer JL; Breslow BP; Hollingsworth SN; Hohmann MG; Hoffmann WA Tree Physiol; 2014 Apr; 34(4):404-14. PubMed ID: 24682534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]