BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27869186)

  • 1. Regulation of Anticancer Styrylpyrone Biosynthesis in the Medicinal Mushroom Inonotus obliquus Requires Thioredoxin Mediated Transnitrosylation of S-nitrosoglutathione Reductase.
    Zhao Y; He M; Ding J; Xi Q; Loake GJ; Zheng W
    Sci Rep; 2016 Nov; 6():37601. PubMed ID: 27869186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible S-nitrosylation limits over synthesis of fungal styrylpyrone upon nitric oxide burst.
    Zhao Y; He M; Xi Q; Ding J; Hao B; Keller NP; Zheng W
    Appl Microbiol Biotechnol; 2016 May; 100(9):4123-34. PubMed ID: 27000840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvements of S-nitrosylation and denitrosylation in the production of polyphenols by Inonotus obliquus.
    Zheng W; Liu Y; Pan S; Yuan W; Dai Y; Wei J
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1763-72. PubMed ID: 21468702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of nitric oxide produced by an inducible nitric oxide synthase-like protein with enhanced expression of the phenylpropanoid pathway in Inonotus obliquus cocultured with Phellinus morii.
    Zhao Y; Xi Q; Xu Q; He M; Ding J; Dai Y; Keller NP; Zheng W
    Appl Microbiol Biotechnol; 2015 May; 99(10):4361-72. PubMed ID: 25582560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein denitrosylation: enzymatic mechanisms and cellular functions.
    Benhar M; Forrester MT; Stamler JS
    Nat Rev Mol Cell Biol; 2009 Oct; 10(10):721-32. PubMed ID: 19738628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transnitrosylation: A Factor in Nitric Oxide-Mediated Penile Erection.
    Musicki B; Lagoda G; Goetz T; La Favor JD; Burnett AL
    J Sex Med; 2016 May; 13(5):808-814. PubMed ID: 27114194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation.
    Sengupta R; Holmgren A
    Antioxid Redox Signal; 2013 Jan; 18(3):259-69. PubMed ID: 22702224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioredoxin-mimetic peptides as catalysts of S-denitrosylation and anti-nitrosative stress agents.
    Kronenfeld G; Engelman R; Weisman-Shomer P; Atlas D; Benhar M
    Free Radic Biol Med; 2015 Feb; 79():138-46. PubMed ID: 25483557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrosative Stress and Human Disease: Therapeutic Potential of Denitrosylation.
    Yoon S; Eom GH; Kang G
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues.
    Hashemy SI; Holmgren A
    J Biol Chem; 2008 Aug; 283(32):21890-8. PubMed ID: 18544525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of thioredoxin in the regulation of cellular processes by S-nitrosylation.
    Sengupta R; Holmgren A
    Biochim Biophys Acta; 2012 Jun; 1820(6):689-700. PubMed ID: 21878369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the role of S-nitrosylation/nitrosative stress in inflammation and the role of cellular denitrosylases in inflammation modulation: Implications in health and diseases.
    Chatterji A; Banerjee D; Billiar TR; Sengupta R
    Free Radic Biol Med; 2021 Aug; 172():604-621. PubMed ID: 34245859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunodetection of S-Nitrosoglutathione Reductase Protein in Plant Samples.
    Tichá T; Luhová L; Petřivalský M
    Methods Mol Biol; 2018; 1747():267-280. PubMed ID: 29600466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of S-Nitrosoglutathione Reductase Activity in Plants.
    Janků M; Tichá T; Luhová L; Petřivalský M
    Methods Mol Biol; 2020; 2057():45-59. PubMed ID: 31595469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific and redox-controlled S-nitrosation of thioredoxin.
    Barglow KT; Knutson CG; Wishnok JS; Tannenbaum SR; Marletta MA
    Proc Natl Acad Sci U S A; 2011 Aug; 108(35):E600-6. PubMed ID: 21849622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox regulatory mechanism of transnitrosylation by thioredoxin.
    Wu C; Liu T; Chen W; Oka S; Fu C; Jain MR; Parrott AM; Baykal AT; Sadoshima J; Li H
    Mol Cell Proteomics; 2010 Oct; 9(10):2262-75. PubMed ID: 20660346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings.
    Jain P; von Toerne C; Lindermayr C; Bhatla SC
    Physiol Plant; 2018 Jan; 162(1):49-72. PubMed ID: 28902403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfur Denitrosylation by an Engineered Trx-like DsbG Enzyme Identifies Nucleophilic Cysteine Hydrogen Bonds as Key Functional Determinant.
    Lafaye C; Van Molle I; Tamu Dufe V; Wahni K; Boudier A; Leroy P; Collet JF; Messens J
    J Biol Chem; 2016 Jul; 291(29):15020-8. PubMed ID: 27226614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thioredoxin-Dependent Decomposition of Protein S-Nitrosothiols.
    Kneeshaw S; Spoel SH
    Methods Mol Biol; 2018; 1747():281-297. PubMed ID: 29600467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase.
    Choi MS
    Biomol Ther (Seoul); 2018 Nov; 26(6):533-538. PubMed ID: 30464072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.